Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34544139

ABSTRACT

Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic unit of selection. We tested GWFP in two loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib families (5-20 individuals per family), and a simulated population with the same pedigree structure. In both populations, phenotypic and genomic data was pooled at the family level in silico. Marker effects were estimated to compute genomic estimated breeding values (GEBV) at the individual and family (GWFP) levels. Less than six individuals per family produced inaccurate estimates of family phenotypic performance and allele frequency. Tested across different scenarios, GWFP predictive ability was higher than those for GEBV in both populations. Validation sets composed of families with similar phenotypic mean and variance as the training population yielded predictions consistently higher and more accurate than other validation sets. Results revealed potential for applying GWFP in breeding programs whose selection unit are family, and for systems where family can serve as training sets. The GWFP approach is well suited for crops that are routinely genotyped and phenotyped at the plot-level, but it can be extended to other breeding programs. Higher predictive ability obtained with GWFP would motivate the application of genomic prediction in these situations.


Subject(s)
Models, Genetic , Selection, Genetic , Genomics , Genotype , Humans , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
2.
New Phytol ; 221(2): 818-833, 2019 01.
Article in English | MEDLINE | ID: mdl-30252143

ABSTRACT

Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Genome-Wide Association Study , Plant Breeding , Quantitative Trait, Heritable , Inheritance Patterns/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
3.
BMC Genomics ; 18(1): 524, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28693539

ABSTRACT

BACKGROUND: The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. RESULTS: Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000-10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. CONCLUSIONS: This study provides further experimental data supporting positive prospects of using genome-wide data to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast to the limited value of the local GWAS approach toward breeding applications in forest trees.


Subject(s)
Breeding , Eucalyptus/growth & development , Eucalyptus/genetics , Genome-Wide Association Study , Genomics , Bayes Theorem , Genome, Plant/genetics , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 18(1): 423, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28558696

ABSTRACT

BACKGROUND: Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs. RESULTS: Using this technology, 6286 SNPs (1 SNP/86.5 Kbp) were genotyped in genic (43.3%) and non-genic regions (56.7%). Genetic subdivision associated to the common bean gene pools (K = 2) and related to grain types (K = 3 and K = 5) were reported. A total of 83% and 91% of all SNPs were polymorphic within the Andean and Mesoamerican gene pools, respectively, and 26% were able to differentiate the gene pools. Genetic diversity analysis revealed an average H E of 0.442 for the whole collection, 0.102 for Andean and 0.168 for Mesoamerican gene pools (F ST = 0.747 between gene pools), 0.440 for the group of cultivars and lines, and 0.448 for the group of landrace accessions (F ST = 0.002 between cultivar/line and landrace groups). The SNP effects were predicted with predominance of impact on non-coding regions (77.8%). SNPs under selection were identified within gene pools comparing landrace and cultivar/line germplasm groups (Andean: 18; Mesoamerican: 69) and between the gene pools (59 SNPs), predominantly on chromosomes 1 and 9. The LD extension estimate corrected for population structure and relatedness (r2SV) was ~ 88 kbp, while for the Andean gene pool was ~ 395 kbp, and for the Mesoamerican was ~ 130 kbp. CONCLUSIONS: For common bean, DArTseq provides an efficient and cost-effective strategy of generating SNPs for large-scale genome-wide studies. The DArTseq resulted in an operational panel of 560 polymorphic SNPs in linkage equilibrium, providing high genome coverage. This SNP set could be used in genotyping platforms with many applications, such as population genetics, phylogeny relation between common bean varieties and support to molecular breeding approaches.


Subject(s)
Genomics , Genotyping Techniques , Phaseolus/genetics , Polymorphism, Single Nucleotide , Genetic Loci/genetics , Genome, Plant/genetics , Linkage Disequilibrium , Rain , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...