Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammopharmacology ; 31(1): 485-498, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586042

ABSTRACT

Nutritional interventions have been shown to be an interesting approach for the treatment of chronic diseases, including inflammatory bowel disease (IBD). Persea americana Mill. (avocado), is a potential food to be used for the prevention or treatment of intestinal inflammation, due to its nutritional value and pharmacological effects. In this study we evaluated if the dietary intervention with avocado fruit pulp could as an intestinal anti-inflammatory diet using a trinitrobenzenesulfonic acid (TNBS) model of intestinal inflammation in rats. For this purpose, 5, 10 or 20% of avocado fruit pulp was incorporated in the diet of rats, for 21 days before and 7 days after TNBS-induced intestinal inflammation. Dietary intervention with avocado fruit pulp (20%) decreased the extension of colonic lesions (1.38 ± 0.99 vs. 2.67 ± 0.76 cm), weight/length colon ratio (151.03 ± 31.45 vs. 197.39 ± 49.48 cm), inhibited myeloperoxidase activity (891.2 ± 243.2 vs 1603 ± 158.2 U/g), reduced tumor necrosis factor-α (53.94 ± 6.45 vs. 114.9 ± 6.21 pg/mg), interleukin-1ß (583.6 ± 106.2 vs. 1259 ± 81.68 pg/mg) and interferon gamma (27.95 ± 2.97 vs. 47.79 ± 3.51 pg/mg) levels and prevented colonic glutathione depletion (2585 ± 77.2 vs 1778 ± 167.2 nmol/g). The consumption of enriched diet with 20% avocado pulp by 28 days did not promote any alterations in the biochemical or behavioral parameters evaluated. Avocado showed intestinal anti-inflammatory activity, modulating immune response, and acting as antioxidant. The dietary intervention with avocado was safe, suggesting its potential as a complementary treatment in intestinal inflammation.


Subject(s)
Biological Products , Persea , Rats , Animals , Trinitrobenzenesulfonic Acid , Antioxidants/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy
2.
Int J Mol Sci ; 19(1)2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29300307

ABSTRACT

Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 µg·mL-1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 µg·mL-1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 µg·mL-1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry.


Subject(s)
Myrtaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Plant Leaves/chemistry
3.
World J Gastroenterol ; 23(24): 4369-4380, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28706419

ABSTRACT

AIM: To investigate the effects of Ground Cherry (Physalis angulata L.) standardized supercritical CO2 extract in trinitrobenzenesulphonic acid (TNBS) model of rat intestinal inflammation. METHODS: The animals were divided into groups that received vehicle or P. angulata extract (PACO2) orally at the doses 25, 50 and 100 mg/kg daily by 5 d before TNBS damage. Protective effects of PACO2 were assessed by macroscopic analysis, biochemical determinations of the levels of myeloperoxidase (MPO), alkaline phosphatase (ALP), glutathione and cytokines (such as INF-γ, IL-1ß, IL-6, IL-10 and TNF-α), gene expression evaluation (including Hsp70, heparanase, NF-κB, mitogen-activated protein kinases (Mapk) 1, 3, 6 and 9, and the mucins genes Muc 1, 2, 3 and 4) and histopathological studies using optical, and electronic (transmission and scanning) microscopy. RESULTS: PACO2 extract promoted a significant reduction in MPO and ALP activities, reducing oxidative stress and neutrophil infiltration. These effects were accompanied by significant reduction of colonic levels of IFN-γ and IL-6 and down-regulation of heparanase, Hsp70, Mapk3, Mapk9, Muc1 and Muc2 genes expression when compared with TNBS-control animals. In addition, protective effects were also evidenced by reduced neutrophil infiltration, recovery of cell architecture and replacement of mucin by histopathological and ultrastructural analysis. CONCLUSION: Physalis angulata supercritical CO2 extract is an intestinal anti-inflammatory product that modulates oxidative stress, immune response and expression of inflammatory mediators, with potentially utility for treating inflammatory bowel disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Physalis/chemistry , Plant Extracts/therapeutic use , Administration, Oral , Alkaline Phosphatase/metabolism , Animals , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid , Colitis/chemically induced , Colitis/pathology , Colon/enzymology , Colon/pathology , Colon/ultrastructure , Cytokines/metabolism , Disease Models, Animal , Down-Regulation , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Male , Microscopy, Electron, Scanning Transmission , Mitogen-Activated Protein Kinases/metabolism , Neutrophil Infiltration/drug effects , Peroxidase/metabolism , Rats , Rats, Wistar , Trinitrobenzenesulfonic Acid/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...