Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(11): 2348-2372, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34609851

ABSTRACT

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.


Subject(s)
Antimalarials/pharmacology , Calcium/metabolism , High-Throughput Screening Assays/methods , Homeostasis/drug effects , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Benzofurans/chemistry , Cytosol/metabolism , DNA/metabolism , Imidazoles/chemistry , Mitochondria/metabolism , Plasmodium falciparum/metabolism , Structure-Activity Relationship
2.
J Med Chem ; 62(20): 9217-9235, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31566384

ABSTRACT

One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.


Subject(s)
Antimalarials/pharmacology , Artemisinins/chemistry , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/metabolism , Artemisinins/metabolism , Artemisinins/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Humans , Inhibitory Concentration 50 , Mutagenesis, Site-Directed , Plasmodium falciparum/growth & development , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Solubility , Structure-Activity Relationship , Thiazoles/chemistry
4.
J Med Chem ; 60(16): 6880-6896, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28806082

ABSTRACT

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy. Further evaluation of the lead compounds showed that in vivo genotoxic degradants might be generated. The compounds generated during this medicinal chemistry program and others from the GSK collection were used to build a pharmacophore model which could be used in the virtual screening of compound collections and potentially identify new chemotypes that could deliver the same antiparasitic profile.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antimalarials/pharmacology , Oxadiazoles/pharmacology , 2,2'-Dipyridyl/administration & dosage , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/pharmacology , 2,2'-Dipyridyl/toxicity , Animals , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/toxicity , Atovaquone/pharmacology , Chloroquine/pharmacology , Drug Design , Female , Humans , Hydrazines/metabolism , Mice , Mutagenicity Tests , Mutagens/metabolism , Oxadiazoles/administration & dosage , Oxadiazoles/chemical synthesis , Oxadiazoles/toxicity , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Pyrimethamine/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...