Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 88(1): 015111, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28147640

ABSTRACT

We present an in situ Radiated Materials (iRadMat) experimental module designed to interface with a servo-hydraulic load frame for X-ray measurements at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermo-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. The iRadMat is a radiation-shielded vacuum heating system with the sample rotation-under-load capability. We describe the design features and performances of the iRadMat and present a dataset from a 300 °C uniaxial tensile test of a neutron-irradiated pure Fe specimen to demonstrate its capabilities.

2.
Calcif Tissue Int ; 99(4): 384-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27230741

ABSTRACT

The G171V mutation in the low-density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using HBM transgenic mouse models have consistently found increased bone mass and whole-bone strength, but little attention has been paid to the composition of the bone matrix. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness, and energy to failure than wild-type animals. The increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity, carbonate, and acid phosphate substitution as measured by Fourier transform infrared microspectroscopy, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls, as measured by X-ray scattering. The largest between genotype difference in material properties was a twofold increase in the modulus of toughness in HBM mice. Step-wise regression analyses showed that the specific matrix compositional parameters most closely associated with material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build bone mass but also to improve bone quality.


Subject(s)
Bone Matrix/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Mutation , Animals , Bone Density/genetics , Bone and Bones/metabolism , Collagen/chemistry , Female , Femur/metabolism , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Point Mutation , Regression Analysis , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography , X-Rays
3.
Philos Trans A Math Phys Eng Sci ; 373(2043)2015 Jun 13.
Article in English | MEDLINE | ID: mdl-25939627

ABSTRACT

A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.


Subject(s)
Algorithms , Artifacts , Crystallography/methods , Models, Statistical , Radiographic Image Interpretation, Computer-Assisted/methods , X-Ray Diffraction/methods , Computer Simulation , Phase Transition , Poisson Distribution , Reproducibility of Results , Sensitivity and Specificity
4.
Connect Tissue Res ; 55 Suppl 1: 48-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25158180

ABSTRACT

Sea urchin's teeth from four families of order Echinoida and from orders Temnopleuroida, Arbacioida and Cidaroida were studied with synchrotron X-ray diffraction. The high and very high Mg calcite phases of the teeth, i.e. the first and second stage mineral constituents, respectively, have the same crystallographic orientations. The co-orientation of first and second stage mineral, which the authors attribute to epitaxy, extends across the phylogenic width of the extant regular sea urchins and demonstrates that this is a primitive character of this group. The range of compositions Δx for the two phases of Ca1-xMgxCO3 is about 0.20 or greater and is consistent with a common biomineralization process.


Subject(s)
Calcium Carbonate/chemistry , Sea Urchins/chemistry , Tooth/chemistry , Animals , Image Processing, Computer-Assisted , Sea Urchins/ultrastructure , Tooth/ultrastructure , X-Ray Diffraction
5.
Bone ; 61: 191-200, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24468719

ABSTRACT

Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone and Bones/drug effects , Extracellular Matrix/drug effects , Raloxifene Hydrochloride/pharmacology , Animals , Biomechanical Phenomena , Dogs , Humans , Skeleton
6.
ChemSusChem ; 7(2): 543-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24399807

ABSTRACT

Nanocrystalline lithium peroxide (Li2 O2 ) is considered to play a critical role in the redox chemistry during the discharge-charge cycling of the Li-O2 batteries. In this report, a spatially resolved, real-time synchrotron X-ray diffraction technique was applied to study the cyclic formation/decomposition of Li2 O2 crystallites in an operating Li-O2 cell. The evaluation of Li2 O2 grain size, concentration, and spatial distribution inside the cathode is demonstrated under the actual cycling conditions. The study not only unambiguously proved the reversibility of the Li2 O2 redox reaction during reduction and evolution of O2 , but also allowed for the concentration and dimension growths of the peroxide nanocrystallites to be accurately measured at different regions within the cathode. The results provide important insights for future investigation on mass and charge transport properties in Li2 O2 and improvement in cathode structure and material design.


Subject(s)
Electric Power Supplies , Lithium Compounds/chemistry , Lithium/chemistry , Oxygen/chemistry , Peroxides/chemistry , Electric Conductivity
7.
Biomech Model Mechanobiol ; 13(3): 615-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23958833

ABSTRACT

Cyclic compressive loading tests were carried out on bovine femoral bones at body temperature (37 °C), with varying mean stresses (-55 to -80 MPa) and loading frequencies (0.5-5 Hz). At various times, the cyclic loading was interrupted to carry out high-energy X-ray scattering measurements of the internal strains developing in the hydroxyapatite (HAP) platelets and the collagen fibrils. The residual strains upon unloading were always tensile in the HAP and compressive in the fibrils, and each increases in magnitude with loading cycles, which can be explained from damage at the HAP­collagen interface and accumulation of plastic deformation within the collagen phase. The samples tested at a higher mean stress and stress amplitude, and at lower loading frequencies exhibit greater plastic deformation and damage accumulation, which is attributed to greater contribution of creep. Synchrotron microcomputed tomography of some of the specimens showed that cracks are produced during cyclic loading and that they mostly occur concentric with Haversian canals.


Subject(s)
Bone and Bones/chemistry , Collagen/chemistry , Durapatite/chemistry , Stress, Mechanical , Animals , Cattle , Scattering, Radiation , Thermogravimetry , X-Ray Microtomography
8.
Nanoscale ; 6(1): 365-70, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24201971

ABSTRACT

Colloidal silver nanowires become instable and tend to fragment into shortened nanorods and nanoparticles at elevated temperatures. Such morphological variations are associated with the transformation of crystalline structures from the body-centered tetragonal (b.c.t.) lattices into the face-centered cubic (f.c.c.) ones. The crystalline phase transformation has been probed in real time with an in situ technique based on time-resolved high-energy synchrotron X-ray diffraction. Comprehensive analysis of the in situ measurements provides, for the first time, the quantitative understanding of kinetics and thermodynamics involved in the fragmentation of the colloidal silver nanowires.

9.
Nat Commun ; 4: 2255, 2013.
Article in English | MEDLINE | ID: mdl-23929396

ABSTRACT

Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium.

10.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1467-75, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827597

ABSTRACT

Synchrotron X-ray diffraction is used to study in situ the evolution of phase strains during compressive creep deformation in bovine bone and dentin for a range of compressive stresses and irradiation rates, at ambient and body temperatures. In all cases, compressive strains in the collagen phase increase with increasing creep time (and concomitant irradiation), reflecting macroscopic deformation of the sample. By contrast, compressive elastic strains in the hydroxyapatite (HAP) phase, created upon initial application of compressive load on the sample, decrease with increasing time (and irradiation) for all conditions; this load shedding behavior is consistent with damage at the HAP-collagen interface due to the high irradiation doses (from ~100 to ~9,000 kGy). Both the HAP and fibril strain rates increase with applied compressive stress, temperature and irradiation rate, which is indicative of greater collagen molecular sliding at the HAP-collagen interface and greater intermolecular sliding (i.e., plastic deformation) within the collagen network. The temperature sensitivity confirms that testing at body temperature, rather than ambient temperature, is necessary to assess the in vivo behavior of bone and teeth. The characteristic pattern of HAP strain evolution with time differs quantitatively between bone and dentin, and may reflect their different structural organization.


Subject(s)
Bone and Bones/physiology , Bone and Bones/radiation effects , Dentin/physiology , Dentin/radiation effects , Stress, Mechanical , Temperature , Animals , Biomechanical Phenomena/radiation effects , Cattle , Collagen/metabolism , Durapatite/metabolism , Synchrotrons , X-Ray Diffraction , X-Rays
11.
J R Soc Interface ; 10(86): 20130319, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23804437

ABSTRACT

Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular.


Subject(s)
Bivalvia/metabolism , Calcification, Physiologic/physiology , Calcium Carbonate/metabolism , Magnesium/metabolism , Animals , Bivalvia/chemistry , Calcium Carbonate/chemistry , Magnesium/chemistry , X-Ray Diffraction
12.
J Mech Behav Biomed Mater ; 21: 17-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23454365

ABSTRACT

Under long-term loading creep conditions, mineralized biological tissues like bone are expected to behave in a similar manner to synthetic composites where the creeping matrix sheds load to the elastic reinforcement as creep deformation progresses. To study this mechanism in biological composites, creep experiments were performed at 37 °C on bovine compact bone and dentin. Static compressive stresses were applied to the samples, while wide- and small-angle scattering patterns from high energy synchrotron X-rays were used to determine, respectively, the elastic strain in the hydroxyapatite (HAP) platelets and the strain in the mineralized collagen fibril, as a function of creep time. In these highly irradiated biological composites, the reinforcing hydroxyapatite platelets progressively transfer some of their stress back to the softer protein matrix during creep. While such behavior can be explained by damage at the interface between the two phases, it is not consistent with measurements of the apparent moduli--the ratio of applied stress to elastic HAP strain measured throughout the creep experiments by elastic unload/load segments--which remained constant throughout the experiment and thus indicated good HAP/protein bonding. A possible explanation is a combination of X-ray and load induced interfacial damage explaining the shedding of load from the HAP during long term creep, coupled with interfacial re-bonding of the load-disrupted reversible bonds upon unloading, explaining the unaffected elastic load partitioning during unload/load segments. This hypothesis is further supported by finite element modeling which shows results mirroring the experimental strain measurements when considering interfacial delamination and a compliant interstitial space at the ends of the HAP platelets.


Subject(s)
Dentin/physiology , Dentin/radiation effects , Femur/physiology , Femur/radiation effects , Models, Biological , Animals , Cattle , Compressive Strength/physiology , Compressive Strength/radiation effects , Computer Simulation , Elastic Modulus/physiology , Elastic Modulus/radiation effects , In Vitro Techniques , Radiation Dosage , Viscosity/radiation effects , X-Rays
13.
Acta Biomater ; 9(2): 5305-12, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22871638

ABSTRACT

Both the load partitioning between hydroxyapatite (HAP) and collagen during compressive creep deformation of bone and the HAP residual strain in unloaded bone have been shown in previous synchrotron X-ray diffraction studies to be affected by the X-ray irradiation dose. Here, through detailed analysis of the X-ray diffraction patterns of bovine bone, the effect of X-ray dose on (i) the rate of HAP elastic strain accumulation/shedding under creep conditions and (ii) the HAP lattice spacing and average root mean square (RMS) strain under load-free conditions are examined. These strain measurements exhibit three stages in response to increasing X-ray dose. Up to ∼75 kGy (stage I) no effect of dose is observed, indicating a threshold behavior. Between ∼75 and ∼300 kGy (stage II) in unloaded bone the HAP d-spacing increases and the RMS strain decreases with dose, indicating strain relaxation of HAP. Furthermore, under constant compressive load creep conditions, the rate of compressive elastic strain accumulation in HAP decreases with increasing dose until, at ∼115 kGy, it changes sign, indicating that the HAP phase is shedding load during creep deformation. These stage II behaviors are consistent with HAP-collagen interfacial damage, which allows the HAP elastic strain to relax within both the loaded and unloaded samples. Finally, for doses in excess of ∼300 kGy (stage III, measured up to 7771 kGy) the HAP lattice spacing and RMS strain for load-free samples and the rate of HAP elastic strain shedding for crept samples remain independent of dose, suggesting a saturation of damage and/or stiffening of the collagen matrix due to intermolecular cross-linking.


Subject(s)
Durapatite/metabolism , Elasticity/radiation effects , Femur/physiology , Femur/radiation effects , Stress, Mechanical , Animals , Cattle , Crystallization , Dose-Response Relationship, Radiation , Time Factors , Weight-Bearing/physiology , X-Ray Diffraction , X-Rays
14.
PLoS One ; 8(12): e83289, 2013.
Article in English | MEDLINE | ID: mdl-24386172

ABSTRACT

We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic glass under load at room temperature and below. From the measured strain fields we can calculate the components of the stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip. Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities ((K(If) = 76 MPa m(1/2)) prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial stress intensities (K(If) = 39 MPa m(1/2)) and show only limited evidence of crack-tip plasticity. We propose that the difference in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson's ratio. It is likely that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution.


Subject(s)
Glass/chemistry , Metals/chemistry , Stress, Mechanical , Elasticity , Materials Testing , Shear Strength , Surface Properties
15.
ChemSusChem ; 5(12): 2421-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23047616

ABSTRACT

Using a microfocused synchrotron X-ray diffraction (µ-XRD) method, we systematically investigated the distributions of insoluble lithium precipitates, which formed through electrolyte decomposition, separately in all three regions (cathode, separator, and anode) of failed batteries with a spatial resolution of 20 µm. We found unexpectedly that there was a significantly higher concentration (almost twice as much) of precipitates in the separator than in the cathode. SEM revealed that the precipitates grew on the separator fiber surface, ultimately obstructing the pores serving as the ion-transport channel. A "refurbished" battery, which was composed of a spent separator from a failed battery, showed a much higher overpotential and shorter cycle life than that found in a new battery.


Subject(s)
Electric Power Supplies , Lithium Compounds/chemistry , Oxygen/chemistry , Chemical Precipitation , Electrochemical Techniques , Electrodes , Equipment Design , Microscopy, Electron, Scanning , Surface Properties , X-Ray Diffraction
16.
J Struct Biol ; 180(2): 280-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940703

ABSTRACT

In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth.


Subject(s)
Calcium Carbonate/chemistry , Sea Urchins/chemistry , Tooth/chemistry , Animals , Spectrum Analysis, Raman , Synchrotrons , X-Ray Diffraction
17.
J Mech Behav Biomed Mater ; 14: 101-12, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22982959

ABSTRACT

It is of great interest to delineate the effect of orientation distribution of mineral crystals on the bulk mechanical behavior of bone. Using a unique synergistic approach combining a progressive loading scheme and synchrotron X-ray scattering techniques, human cortical bone specimens were tested in compression to examine the in situ mechanical behavior of mineral crystals aligned in different orientations. The orientation distribution was quantitatively estimated by measuring the X-ray diffraction intensity from the (002) plane in mineral crystals. In addition, the average longitudinal (c-axis), transverse (a-axis), and shear strains of the subset of mineral crystals aligned in each orientation were determined by measuring the lattice deformation normal to three distinct crystallographic planes (i.e. 002, 310, and 213) in the crystals. The experimental results indicated that the in situ strain and stress of mineral crystals varied with orientations. The normal strain and stress in the longitudinally aligned mineral crystals were markedly greater than those in the transversely oriented crystals, whereas the shear stress reached a maximum for the crystals aligned in ±30° with respect to the loading direction. The maximum principal strain and stress were observed in the mineral crystals oriented along the loading axis, with a similar trend observed in the maximum shear strain and stress. By examining the in situ behavior, the contribution of mineral crystals to load bearing and the bulk behavior of bone are discussed.


Subject(s)
Compressive Strength , Femur/physiology , Materials Testing/instrumentation , Minerals/chemistry , Synchrotrons , Weight-Bearing , X-Ray Diffraction/instrumentation , Biomechanical Phenomena , Femur/chemistry , Humans , Stress, Mechanical
18.
J Chem Phys ; 136(7): 074105, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22360234

ABSTRACT

An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.

19.
Biomech Model Mechanobiol ; 10(2): 147-60, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20521160

ABSTRACT

Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elastic stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.


Subject(s)
Computer Simulation , Elastic Modulus , Fibrillar Collagens/chemistry , Minerals/chemistry , Animals , Dogs , Finite Element Analysis , Models, Biological , Reproducibility of Results , Scattering, Small Angle , Stress, Mechanical , X-Ray Diffraction
20.
Nano Lett ; 10(9): 3747-53, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20681550

ABSTRACT

Real-time evolution of nanoparticles grown at the semiconductor/electrolyte interface formed between a single crystalline n-type GaAs wafer and an aqueous solution of AgNO(3) has been studied by using high-energy synchrotron X-ray diffraction. The results reveal the distinct nucleation and growth steps involved in the growth of anisotropic Ag nanoplates on the surface of the GaAs wafer. For the first time, a quick transit stage is observed to be responsible for the structural transformation of the nuclei to form structurally stable seeds that are critical for guiding their anisotropic growth into nanoplates. Reaction between a GaAs wafer and AgNO(3) solution at room temperature primarily produces Ag nanoplates on the surface of the GaAs wafer in the dark and at room temperature. In contrast, X-ray irradiation can induce charge separation in the GaAs wafer to drive the growth of nanoparticles made of silver oxy salt (Ag(7)NO(11)) and silver arsenate (Ag(3)AsO(4)) at the semiconductor/electrolyte interface if the GaAs wafer is illuminated by the X-ray and reaction time is long enough.

SELECTION OF CITATIONS
SEARCH DETAIL
...