Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 46(2): 279-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349512

ABSTRACT

PURPOSE: 3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized. METHODS: Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVO® bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers. RESULTS: Cultivation of MSC in the VITVO® bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 109 ± 1.5 × 109 and 9.7 × 109 ± 3.1 × 109 particles/mL) compared to static 2D culture (4.2 × 109 ± 7.5 × 108 and 3.9 × 109 ± 3.0 × 108 particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 107 ± 1.1 × 107 particles/µg protein in 2D to 1.6 × 108 ± 8.3 × 106 particles/µg protein in 3D. Total MSC-EVs as well as CD73-CD90+ MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions. CONCLUSION: The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Extracellular Vesicles/metabolism , Bioreactors
2.
Cell Biosci ; 12(1): 51, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501833

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membrane structures exerting major effects in physiological as well as pathological processes by functioning as vehicles for the delivery of biomolecules to their target cells. An increasing number of effects previously attributed to cell-based therapies have been recognized to be actually mediated by EVs derived from the respective cells, suggesting the administration of purified EVs instead of living cells for cell-based therapies. In this review, we focus on the heterogeneity of EVs derived from mesenchymal stem/stromal cells (MSC) and summarize upstream process parameters that crucially affect the resulting therapeutic properties and biological functions. Hereby, we discuss the effects of the cell source, medium composition, 3D culture, bioreactor culture and hypoxia. Furthermore, aspects of the isolation and storage strategies influences EVs are described. Conclusively, optimization of upstream process parameters should focus on controlling MSC-derived EV heterogeneity for specific therapeutic applications.

3.
Acta Biomater ; 134: 276-288, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329787

ABSTRACT

Currently available synthetic small diameter vascular grafts reveal low patency rates due to thrombosis and intimal hyperplasia. Biofunctionalized grafts releasing nitric oxide (NO) in situ may overcome these limitations. In this study, a drug-eluting vascular graft was designed by blending polycaprolactone (PCL) with S-nitroso-human-serum-albumin (S-NO-HSA), a nitric oxide donor with prolonged half-life. PCL-S-NO-HSA grafts and patches were fabricated via electrospinning. The fabrication process was optimized. Patches were characterized in vitro for their morphology, drug release, biomechanics, inflammatory effects, cell proliferation, and expression of adhesion molecules. The selected optimized formulation (8%PCL-S-NO-HSA) had superior mechanical/morphological properties with high protein content revealing extended NO release (for 28 days). 8%PCL-S-NO-HSA patches significantly promoted endothelial cell proliferation while limiting smooth muscle cell proliferation. Expression of adhesion molecules (ICAM-1, VCAM-1) and pro-inflammatory macrophage/cytokine markers (CD80, IL-1α, TNF-α) was significantly reduced. 8%PCL-S-NO-HSA patches had superior immunomodulatory properties by up-regulating anti-inflammatory cytokines (IL-10) and M2 macrophage marker (CD163) at final time points. Grafts were further evaluated in a small rodent model as aortic implants up to 12 weeks. Grafts were assessed by magnetic resonance imaging angiography (MRI) in vivo and after retrieval by histology. All grafts remained 100 % patent with no signs of thrombosis or calcification. 8%PCL-S-NO-HSA vascular grafts supported rapid endothelialization, whereas smooth muscle cell proliferation was hampered in earlier phases. This study indicates that 8%PCL-S-NO-HSA grafts effectively support long-term in situ release of bioactive NO. The beneficial effects observed can be promising features for long-term success of small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: Despite extensive research in the field of small diameter vascular graft replacement, there is still no appropriate substitute to autografts yet. Various limitations are associated with currently available synthetic vascular grafts such as thrombogenicity and intimal hyperplasia. Therefore, developing new generations of such conduits has become a major focus of research. One of the most significant signaling molecules that are involved in homeostasis of the vascular system is nitric oxide. The new designed nitric-oxide eluting vascular grafts described in this study induce rapid surface endothelialization and late migration of SMCs into the graft wall. These beneficial effects have potential to improve current limitations of small diameter vascular grafts.


Subject(s)
Pharmaceutical Preparations , Vascular Grafting , Blood Vessel Prosthesis , Nitric Oxide Donors , Polyesters , Serum Albumin, Human
4.
Article in English | MEDLINE | ID: mdl-31709251

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) display a variety of therapeutically relevant effects, such as the induction of angiogenesis, particularly under hypoxic conditions. It is generally recognized that MSCs exert their effects by secretion of paracrine factors and by stimulation of host cells. Furthermore, there is increasing evidence that some therapeutically relevant effects of MSCs are mediated by MSC-derived extracellular vesicles (EVs). Since our current knowledge on MSC-derived EVs released under hypoxic conditions is very limited, we aimed to characterize MSC-derived EVs from normoxic vs. hypoxic conditions (5% O2). Adipose-derived MSCs were grown under normoxic and hypoxic conditions, and EVs were analyzed by flow cytometry using lactadherin as a marker for EVs exposing phosphatidylserine, CD63 and CD81 as EV markers, as well as CD73 and CD90 as MSC surface markers. Particle concentration and size distribution were measured by nanoparticle tracking analysis (NTA), and the EV surface antigen signature was characterized using bead-based multiplex flow cytometry. Furthermore, we evaluated the potential of MSC-derived EVs obtained under hypoxic conditions to support angiogenesis using an in vitro assay with an hTERT-immortalized human umbilical vein endothelial cell (HUVEC) line. Proliferation and viability of MSCs were increased under hypoxic conditions. EV concentration, size, and surface signature did not differ significantly between normoxic and hypoxic conditions, with the exception of CD44, which was significantly upregulated on normoxic EVs. EVs from hypoxic conditions exhibited increased tube formation as compared to normoxic EVs or to the corresponding supernatants from both groups, indicating that tube formation is facilitated by EVs rather than by soluble factors. In conclusion, hypoxia conditioned MSC-derived EVs appear to be functionally more potent than normoxic MSC-derived EVs regarding the induction of angiogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...