Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 308(Pt 1): 136196, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041519

ABSTRACT

We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth "catch-up" effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.


Subject(s)
Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Body Weight , Carbohydrates , Diet, High-Fat , Fatty Acids, Volatile/metabolism , Female , Gene Expression , Humans , Lipid Metabolism , Lipids , Liver/metabolism , Polysaccharides/metabolism , Prenatal Exposure Delayed Effects/metabolism , Sucrose/metabolism , Vitamins/metabolism , Vitamins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...