Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 52(1): 426-436, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39206935

ABSTRACT

Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs. The system allows for the individual screening and isolation of up to 6,400 cells within approximately one day, with the opportunity for parallelization and efficient upscaling. We successfully applied this workflow to both hybridomas and human patient-derived B cells, enabling subsequent clonal expansion or antibody sequence analysis through an optimized, single-cell nested reverse transcription-polymerase chain reaction (RT-PCR) procedure. By providing a time-efficient and more streamlined single ASC screening and isolation process, our workflow holds promise for driving forward progress in mAb development.


Subject(s)
High-Throughput Screening Assays , Hybridomas , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , High-Throughput Screening Assays/methods , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis
2.
J Virol ; 96(24): e0115822, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453884

ABSTRACT

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination. However, a proteomic comparison of the Bartha virion to wild-type (WT) PRV virions is lacking. Here, we present a comprehensive mass spectrometry-based proteome comparison of the attenuated Bartha strain and three commonly used WT PRV strains: Becker, Kaplan, and NIA3. We report the detection of 40 structural and 14 presumed nonstructural proteins through a combination of data-dependent and data-independent acquisition. Interstrain comparisons revealed that packaging of the capsid and most envelope proteins is largely comparable in-between all four strains, except for the envelope protein pUL56, which is less abundant in Bartha virions. However, distinct differences were noted for several tegument proteins. Most strikingly, we noted a severely reduced incorporation of the tegument proteins IE180, VP11/12, pUS3, VP22, pUL41, pUS1, and pUL40 in Bartha virions. Moreover, and likely as a consequence, we also observed that Bartha virions are on average smaller and more icosahedral compared to WT virions. Finally, we detected at least 28 host proteins that were previously described in PRV virions and noticed considerable strain-specific differences with regard to host proteins, arguing that the potential role of packaged host proteins in PRV replication and spread should be further explored. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha-an attenuated strain created by serial passaging-represents an exceptional success story in alphaherpesvirus vaccination. Here, we used mass spectrometry to analyze the Bartha virion composition in comparison to three established WT PRV strains. Many viral tegument proteins that are considered nonessential for viral morphogenesis were drastically less abundant in Bartha virions compared to WT virions. Interestingly, many of the proteins that are less incorporated in Bartha participate in immune evasion strategies of alphaherpesviruses. In addition, we observed a reduced size and more icosahedral morphology of the Bartha virions compared to WT PRV. Given that the Bartha vaccine strain elicits potent immune responses, our findings here suggest that differences in protein packaging may contribute to its immunogenicity. Further exploration of these observations could aid the development of efficacious vaccines against other alphaherpesvirus vaccines such as HSV-1/2 or EHV-1.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Viral Vaccines , Animals , Capsid/metabolism , Herpesvirus 1, Suid/metabolism , Proteomics , Pseudorabies/prevention & control , Swine , Swine Diseases/prevention & control , Swine Diseases/virology , Viral Proteins/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
3.
Adv Sci (Weinh) ; : e2203880, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36414384

ABSTRACT

Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL