Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38252970

ABSTRACT

Objective. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).Approach. The ABMC response linearity was evaluated with both the FC and a PTW 60019 microDiamond detector. Regarding ionometry-based ABMC calibration, recombination factors were evaluated theoretically, then numerically, and finally experimentally measured in water for a plane parallel ionization chamber PPC05 (IBA Dosimetry) throughkssaturation curves. Finally, ABMC calibration was also achieved with FC and compared to the ionometry method for 7 energies.Main results. Linearity measurements showed that recombination losses in the new ABMC design were well taken into account for the whole range of the machine dose rates. The two-voltage-method was not suitable for recombination correction, but Jaffé's plots analysis was needed, emphasizing the current IAEA TRS-398 reference protocol limitations. Concerning ABMC calibration, FC based absorbed dose estimation and PPC05-based absorbed dose estimation differ by less than 6.3% for the investigated energies.Significance.So far, no update on reference dosimetry protocols is available to estimate the absorbed dose in ionization chambers for clinical high dose rate per pulse pulsed scanned proton beams. This work proposes a validation of the new ABMC design, a method to take into account the recombination effect for ionometry-based ABMC calibration and a comparison with FC dose estimation in this type of proton beams.


Subject(s)
Protons , Radioactivity , Cyclotrons , Calibration , Radiometry/methods , Water
2.
Phys Med ; 115: 103157, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939480

ABSTRACT

PURPOSE: To investigate the feasibility of dose painting by numbers (DPBN) with respect to robustness for proton therapy for head and neck cancers (HNC), and to study the influence of variable RBE on the TCP and OAR dose burden. METHODS AND MATERIALS: Data for 19 patients who have been scanned pretreatment with PET-FDG and subsequently treated with photon therapy were used in the study. A dose response model developed for photon therapy was implemented in a TPS, allowing DPBN plans to be created. Conventional homogeneous dose and DPBN plans were created for each patient, optimized with either fixed RBE = 1.1 or a variable RBE model. Robust optimization was used to create clinically acceptable plans. To estimate the maximum potential loss in TCP due to actual SUV variations from the pre-treatment imaging, we applied a test case with randomized SUV distribution. RESULTS: Regardless of the use of variable RBE for optimization or evaluation, a statistically significant increase (p < 0.001) in TCP was found for DPBN plans as compared to homogeneous dose plans. Randomizing the SUV distribution decreased the TCP for all plans. A correlation between TCP increase and variance of the SUV distribution and target volume was also found. CONCLUSION: DPBN for protons and HNC is feasible and could lead to a TCP gain. Risks associated with the temporal variation of SUV distributions could be mitigated by imposing minimum doses to targets. The correlation found between TCP increase and SUV variance and target volume may be used for patient selection.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Humans , Protons , Radiotherapy Dosage , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Proton Therapy/methods , Positron-Emission Tomography , Radiotherapy Planning, Computer-Assisted/methods
3.
Radiother Oncol ; 182: 109539, 2023 05.
Article in English | MEDLINE | ID: mdl-36806602

ABSTRACT

PURPOSE: We present the nanoCluE model, which uses nano- and microdosimetric quantities to model RBE for protons and carbon ions. Under the hypothesis that nano- and microdosimetric quantities correlates with the generation of complex DNA double strand breakes, we wish to investigate whether an improved accuracy in predicting LQ parameters may be achieved, compared to some of the published RBE models. METHODS: The model is based on experimental LQ data for protons and carbon ions. We generated a database of track structure data for a number of proton and carbon ion kinetic energies with the Geant4-DNA Monte Carlo code. These data were used to obtain both a nanodosimetric quantity and a set of microdosimetric quantities. The latter were tested with different parameterizations versus experimental LQ-data to select the variable and parametrization that yielded the best fit. RESULTS: For protons, the nanoCluE model yielded, for the ratio of the linear LQ term versus the test data, a root mean square error (RMSE) of 1.57 compared to 1.31 and 1.30 for two earlier other published proton models. For carbon ions the RMSE was 2.26 compared to 3.24 and 5.24 for earlier published carbon ion models. CONCLUSION: These results demonstrate the feasibility of the nanoCluE RBE model for carbon ions and protons. The increased accuracy for carbon ions as compared to two other considered models warrants further investigation.


Subject(s)
Carbon , Protons , Humans , Relative Biological Effectiveness , Monte Carlo Method , Carbon/therapeutic use , Radiometry/methods
4.
Phys Med Biol ; 66(18)2021 09 16.
Article in English | MEDLINE | ID: mdl-34464939

ABSTRACT

Published data from cell survival experiments are frequently used as training data for models of proton relative biological effectiveness (RBE). The publications rarely provide full information about the primary particle spectrum of the used beam, or its content of heavy secondary particles. The purpose of this paper is to assess to what extent heavy secondary particles may have been present in published cell survival experiments, and to investigate the impact of non-primary protons for RBE calculations in treatment planning. We used the Monte Carlo code Geant4 to calculate the occurrence of non-primary protons and heavier secondary particles for clinical protons beams in water for four incident energies in the [100, 250] MeV interval. We used the resulting spectra together with a conservative RBE parameterization and an RBE model to map both the rise of RBE at the beam entry surface due to heavy secondary particle buildup, and the difference in estimated RBE if non-primary protons are included or not in the beam quality metric. If included, non-primary protons cause a difference of 2% of the RBE in the plateau region of an spread out Bragg peak and 1% in the Bragg peak. Including non-primary protons specifically for RBE calculations will consequently have a negligible impact and can be ignored. A buildup distance in water of one millimeter was sufficient to reach an equilibrium state of RBE for the four incident energies selected. For the investigated experimental data, 83 out of the 86 data points were found to have been determined with at least that amount of buildup material. Hence, RBE model training data should be interpreted to include the contribution of heavy secondaries.


Subject(s)
Proton Therapy , Protons , Cell Survival , Monte Carlo Method , Relative Biological Effectiveness
5.
Acta Oncol ; 60(2): 199-206, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32941092

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to evaluate the potential to increase the tumor control probability (TCP) with 'dose painting by numbers' (DPBN) plans optimized in a treatment planning system (TPS) compared to uniform dose plans. The DPBN optimization was based on our earlier published formalism for prostate cancer that is driven by dose-responses of Gleason scores mapped from apparent diffusion coefficients (ADC). MATERIAL AND METHODS: For 17 included patients, a set of DPBN plans were optimized in a TPS by maximizing the TCP for an equal average dose to the prostate volume (CTVT) as for a conventional uniform dose treatment. For the plan optimizations we applied different photon energies, different precisions for the ADC-to-Gleason mappings, and different CTVT positioning uncertainties. The TCP increasing potential was evaluated by the DPBN efficiency, defined as the ratio of TCP increases for DPBN plans by TCP increases for ideal DPBN prescriptions (optimized without considering radiation transport phenomena, uncertainties of the CTVT positioning, and uncertainties of the ADC-to-Gleason mapping). RESULTS: The median DPBN efficiency for the most conservative planning scenario optimized with a low precision ADC-to-Gleason mapping, and a positioning uncertainty of 0.6 cm was 10%, meaning that more than half of the patients had a TCP gain of at least 10% of the TCP for an ideal DPBN prescription. By increasing the precision of the ADC-to-Gleason mapping, and decreasing the positioning uncertainty the median DPBN efficiency increased by up to 40%. CONCLUSIONS: TCP increases with DPBN plans optimized in a TPS were found more likely with a high precision mapping of image data into dose-responses and a high certainty of the tumor positioning. These findings motivate further development to ensure precise mappings of image data into dose-responses and to ensure a high spatial certainty of the tumor positioning when implementing DPBN clinically.


Subject(s)
Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Male , Neoplasm Grading , Probability , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
6.
Phys Med Biol ; 64(9): 095018, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30909170

ABSTRACT

Ionization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams. The method uses the energy spectrum of the primaries and accounts for the varying quenched luminescence in heavy, secondary ion tracks through amorphous track structure theory. The new method is assessed against more traditional approaches by correcting the quenched luminescence response from the BCF-12, BCF-60, and 81-0084 plastic scintillators exposed to a 100 MeV pristine proton beam in order to compare the effects of the averaged LET quantities and the secondary ions. Calculations and measurements show that primary protons constitute more than 92% of the energy deposition but account for more than 95% of the luminescence signal in the scintillators. The quenching corrected luminescence signal is in better agreement with the dose measurement when the secondary particles are taken into account. The Birks model provided the overall best quenching corrections, when the quenching corrected signal is adjusted for the number of free model parameters. The quenching parameter kB for the BCF-12 and BCF-60 scintillators is in agreement with literature values and was found to be [Formula: see text] [Formula: see text]m keV-1 for the 81-0084 scintillator. Finally, a fluence threshold for the 100 MeV proton beam was calculated to be of the order of 1010 cm-2, corresponding to 110 Gy, above which the quenching increases non-linearly and the Birks model no longer is applicable.


Subject(s)
Linear Energy Transfer , Protons , Scintillation Counting/instrumentation , Luminescence , Plastics/chemistry , Scintillation Counting/methods , Scintillation Counting/standards , Sensitivity and Specificity
7.
Phys Imaging Radiat Oncol ; 12: 56-62, 2019 Oct.
Article in English | MEDLINE | ID: mdl-33458296

ABSTRACT

BACKGROUND AND PURPOSE: Radiotherapy with dose painting by numbers (DPBN) needs another approach than conventional margins to ensure a geometrically robust dose coverage for the tumor. This study presents a method to optimize DPBN plans that as opposed to achieve a robust dose distribution instead robustly maximize the tumor control probability (TCP) for patients diagnosed with head and neck cancer. MATERIAL AND METHODS: Volumetric-modulated arc therapy (VMAT) plans were optimized with a robust TCP maximizing objective for different dose constraints to the primary clinical target volume (CTVT) for a set of 20 patients. These plans were optimized with minimax optimization together with dose-responses driven by standardized uptake values (SUV) from 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET). The robustness in TCP was evaluated through sampling treatment scenarios with isocenter displacements. RESULTS: The average increase in TCP with DPBN compared to a homogeneous dose treatment ranged between 3 and 20 percentage points (p.p.) which depended on the different dose constraints for the CTVT. The median deviation in TCP increase was below 1p.p. for all sampled treatment scenarios versus the nominal plans. The standard deviation of SUV multiplied by the CTVT volume were found to correlate with the TCP gain with R 2 ≥ 0.9. CONCLUSIONS: Minimax optimization of DPBN plans yield, based on the presented TCP modelling, a robust increase of the TCP compared to homogeneous dose treatments for head and neck cancers. The greatest TCP gains were found for patients with large and SUV heterogeneous tumors, which may give guidance for patient selection in prospective trials.

8.
Phys Med Biol ; 63(6): 065001, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29446760

ABSTRACT

The origin of photons emitted in optical fibres under proton irradiation has been attributed to either entirely Cerenkov radiation or light consisting of fluorescence with a substantial amount of Cerenkov radiation. The source of the light emission is assessed in order to understand why the signal from optical fibres irradiated with protons is reportedly quenching-free. The present study uses the directional emittance of Cerenkov photons in 12 MeV and 20 MeV electron beams to validate a Monte Carlo model for simulating the emittance and transmission of Cerenkov radiation in optical fibres. We show that fewer than 0.01 Cerenkov photons are emitted and guided per 225 MeV proton penetrating the optical fibre, and that the Cerenkov signal in the optical fibre is completely negligible at the Bragg peak. Furthermore, on taking the emittance and guidance of both fluorescence and Cerenkov photons into account, it becomes evident that the reported quenching-free signal in PMMA-based optical fibres during proton irradiation is due to fluorescence.


Subject(s)
Fluorescence , Monte Carlo Method , Phantoms, Imaging , Plastics/chemistry , Protons , Radiometry/instrumentation , Humans , Optical Fibers
SELECTION OF CITATIONS
SEARCH DETAIL
...