Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38540279

ABSTRACT

Imaging biomarkers permit improved approaches to identify the most at-risk patients encountering knee osteoarthritis (KOA) progression. This study aimed to investigate the utility of trabecular bone texture (TBT) extracted from plain radiographs, associated with a set of clinical, biochemical, and radiographic data, as a predictor of long-term radiographic KOA progression. We used data from the Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium dataset. The reference model made use of baseline TBT parameters adjusted for clinical covariates and radiological scores. Several models based on a combination of baseline and 24-month TBT variations (TBT∆TBT) were developed using logistic regression and compared to those based on baseline-only TBT parameters. All models were adjusted for baseline clinical covariates, radiological scores, and biochemical descriptors. The best overall performances for the prediction of radio-symptomatic, radiographic, and symptomatic progression were achieved using TBT∆TBT parameters solely, with area under the ROC curve values of 0.658 (95% CI: 0.612-0.705), 0.752 (95% CI: 0.700-0.804), and 0.698 (95% CI: 0.641-0.756), respectively. Adding biochemical markers did not significantly improve the performance of the TBT∆TBT-based model. Additionally, when TBT values were taken from the entire subchondral bone rather than just the medial, lateral, or central compartments, better results were obtained.

2.
Sci Rep ; 13(1): 21952, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081898

ABSTRACT

The present study aims to examine whether the short-term variations in trabecular bone texture (TBT) parameters, combined with a targeted set of clinical and radiographic data, would improve the prediction of long-term radiographic knee osteoarthritis (KOA) progression. Longitudinal (baseline, 24 and 48-month) data, obtained from the Osteoarthritis Initiative cohort, were available for 1352 individuals, with preexisting OA (1 < Kellgren-Lawrence < 4) at baseline. KOA progression was defined as an increase in the medial joint space narrowing score from the 24-months to the 48-months control point. 16 regions of interest were automatically selected from each radiographic knee and analyzed using fractal dimension. Variations from baseline to 24 months in TBT descriptors as well as selected radiographic and clinical readings were calculated. Different logistic regression models were developed to evaluate the progression prediction performance when associating TBT variations with the selected clinical and radiographic readings. The most predictive model was mainly determined using the area under the receiver operating characteristic curve (AUC). The proposed prediction model including short-term variations in TBT parameters, associated with clinical covariates and radiographic scores, improved the capacity of predicting long-term radiographic KOA progression (AUC of 0.739), compared to models based solely on baseline values (AUC of 0.676, p-value < 0.008).


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Knee Joint , Cancellous Bone/diagnostic imaging , Tibia , Disease Progression , Biomarkers
3.
Life (Basel) ; 13(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36676185

ABSTRACT

Conventional radiography remains the most widely available imaging modality in clinical practice in knee osteoarthritis. Recent research has been carried out to develop novel radiographic biomarkers to establish the diagnosis and to monitor the progression of the disease. The growing number of publications on this topic over time highlights the necessity of a renewed review. Herein, we propose a narrative review of a selection of original full-text articles describing human studies on radiographic imaging biomarkers used for the prediction of knee osteoarthritis-related outcomes. To achieve this, a PubMed database search was used. A total of 24 studies were obtained and then classified based on three outcomes: (1) prediction of radiographic knee osteoarthritis incidence, (2) knee osteoarthritis progression and (3) knee arthroplasty risk. Results showed that numerous studies have reported the relevance of joint space narrowing score, Kellgren-Lawrence score and trabecular bone texture features as potential bioimaging markers in the prediction of the three outcomes. Performance results of reviewed prediction models were presented in terms of the area under the receiver operating characteristic curves. However, fair and valid comparisons of the models' performance were not possible due to the lack of a unique definition of each of the three outcomes.

4.
Sci Rep ; 12(1): 8327, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585147

ABSTRACT

Lacking disease-modifying osteoarthritis drugs (DMOADs) for knee osteoarthritis (KOA), Total Knee Arthroplasty (TKA) is often considered an important clinical outcome. Thus, it is important to determine the most relevant factors that are associated with the risk of TKA. The present study aims to develop a model based on a combination of X-ray trabecular bone texture (TBT) analysis, and clinical and radiological information to predict TKA risk in patients with or at risk of developing KOA. This study involved 4382 radiographs, obtained from the OsteoArthritis Initiative (OAI) cohort. Cases were defined as patients with TKA on at least one knee prior to the 108-month follow-up time point and controls were defined as patients who had never undergone TKA. The proposed TKA-risk prediction model, combining TBT parameters and Kellgren-Lawrence (KL) grades, was performed using logistic regression. The proposed model achieved an AUC of 0.92 (95% Confidence Interval [CI] 0.90, 0.93), while the KL model achieved an AUC of 0.86 (95% CI 0.84, 0.86; p < 0.001). This study presents a new TKA prediction model with a good performance permitting the identification of at risk patient with a good sensitivy and specificity, with a 60% increase in TKA case prediction as reflected by the recall values.


Subject(s)
Arthroplasty, Replacement, Knee , Osteoarthritis, Knee , Arthroplasty, Replacement, Knee/adverse effects , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/surgery , Tibia/diagnostic imaging , Tibia/surgery , X-Rays
5.
Arthritis Res Ther ; 24(1): 66, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260192

ABSTRACT

BACKGROUND: Trabecular bone texture (TBT) analysis has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). In parallel with the improvement in medical imaging technologies, machine learning methods have received growing interest in the scientific osteoarthritis community to potentially provide clinicians with prognostic data from conventional knee X-ray datasets, in particular from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST) cohorts. PATIENTS AND METHODS: This study included 1888 patients from OAI and 683 patients from MOST cohorts. Radiographs were automatically segmented to determine 16 regions of interest. Patients with an early stage of OA risk, with Kellgren and Lawrence (KL) grade of 1 < KL < 4, were selected. The definition of OA progression was an increase in the OARSI medial joint space narrowing (mJSN) grades over 48 months in OAI and 60 months in MOST. The performance of the TBT-CNN model was evaluated and compared to well-known prediction models using logistic regression. RESULTS: The TBT-CNN model was predictive of the JSN progression with an area under the curve (AUC) up to 0.75 in OAI and 0.81 in MOST. The predictive ability of the TBT-CNN model was invariant with respect to the acquisition modality or image quality. The prediction models performed significantly better with estimated KL (KLprob) grades than those provided by radiologists. TBT-based models significantly outperformed KLprob-based models in MOST and provided similar performances in OAI. In addition, the combined model, when trained in one cohort, was able to predict OA progression in the other cohort. CONCLUSION: The proposed combined model provides a good performance in the prediction of mJSN over 4 to 6 years in patients with relevant KOA. Furthermore, the current study presents an important contribution in showing that TBT-based OA prediction models can work with different databases.


Subject(s)
Osteoarthritis, Knee , Disease Progression , Humans , Knee Joint , Neural Networks, Computer , Osteoarthritis, Knee/diagnostic imaging , Radiography
6.
Arthritis Res Ther ; 23(1): 208, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362427

ABSTRACT

BACKGROUND: Trabecular bone texture analysis (TBTA) has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). Consequently, it is important to conduct a comprehensive review that would permit a better understanding of this unfamiliar image analysis technique in the area of KOA research. We examined how TBTA, conducted on knee radiographs, is associated to (i) KOA incidence and progression, (ii) total knee arthroplasty, and (iii) KOA treatment responses. The primary aims of this study are twofold: to provide (i) a narrative review of the studies conducted on radiographic KOA using TBTA, and (ii) a viewpoint on future research priorities. METHOD: Literature searches were performed in the PubMed electronic database. Studies published between June 1991 and March 2020 and related to traditional and fractal image analysis of trabecular bone texture (TBT) on knee radiographs were identified. RESULTS: The search resulted in 219 papers. After title and abstract scanning, 39 studies were found eligible and then classified in accordance to six criteria: cross-sectional evaluation of osteoarthritis and non-osteoarthritis knees, understanding of bone microarchitecture, prediction of KOA progression, KOA incidence, and total knee arthroplasty and association with treatment response. Numerous studies have reported the relevance of TBTA as a potential bioimaging marker in the prediction of KOA incidence and progression. However, only a few studies have focused on the association of TBTA with both OA treatment responses and the prediction of knee joint replacement. CONCLUSION: Clear evidence of biological plausibility for TBTA in KOA is already established. The review confirms the consistent association between TBT and important KOA endpoints such as KOA radiographic incidence and progression. TBTA could provide markers for enrichment of clinical trials enhancing the screening of KOA progressors. Major advances were made towards a fully automated assessment of KOA.


Subject(s)
Osteoarthritis, Knee , Cancellous Bone , Cross-Sectional Studies , Disease Progression , Humans , Osteoarthritis, Knee/diagnostic imaging , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...