Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 137: 156-166, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28586716

ABSTRACT

Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC50 values in the range of 1.2-2.4 µM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-XL) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Quinacrine/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinacrine/chemical synthesis , Quinacrine/chemistry , Structure-Activity Relationship , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...