Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999050

ABSTRACT

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Nanocomposites , Vanillic Acid , Vanillic Acid/chemistry , Vanillic Acid/pharmacology , Nanocomposites/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Cell Line, Tumor
2.
J Environ Manage ; 366: 121697, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38976951

ABSTRACT

The Taklimakan Desert, known for extreme aridity and unique ecological challenges, maintains a delicate life balance beneath its harsh surface. This study investigates intricate dynamics of soil animal communities within this desert ecosystem, with a particular focus on vertical profile variations beneath four dominant shrub species (AS-Alhagi sparsifolia, KC-Karelinia caspia, TR- Tamarix ramosissima, CC- Calligonum caput-medusae). Utilizing comprehensive soil sampling and metagenomics techniques, we reveal the diversity and distribution patterns of soil animal communities from the soil surface down to deeper layers (0-100 cm). Our research outcomes have unveiled that Nematoda and Arthropoda emerge as the most predominant classes of soil animals across all studied shrubs. Specifically, Nematoda exhibited notably high abundance in the KC area, while Arthropoda thrived predominantly in the TR region. We also observed a linear decrease in Nematoda populations as soil depth increased, consistent among all shrub species. Moreover, the highest Shannon diversity within soil animal communities was recorded in the KC area, underscoring a trend of declining alpha diversity in the AS region and an increase in other shrub areas as soil depth increased. Notably, the zones dominated by CC and TR displayed the highest levels of beta diversity. Our correlation analysis of soil animals and environmental factors has pinpointed soil water content, available phosphorus, and available potassium as the most influential drivers of variations in the top-classified soil animal communities. This study provides insights into soil animals in deserts, supporting future research to preserve these fragile deserts and enhance our understanding of life below the surface in challenging ecosystems.

3.
PeerJ ; 12: e17719, 2024.
Article in English | MEDLINE | ID: mdl-39006035

ABSTRACT

Dragon fruit has significant economic value in many countries due to has excellent nutritional content, health advantages, and adaptability to different climates, making it an important crop in the global fruit industry. This study aimed to gather comprehensive nutritional data on three dragon fruit cultivars by analysing the levels of micronutrients, fibre, carbohydrates, antioxidants, vitamins, and minerals in their pulps. Uniform dragon fruit samples underwent thorough analysis for proximate composition, mineral content, pigments, antioxidants, and vitamin C, with statistical methods used to assess significant differences among the parameters studied. The proximate composition analysis revealed significant differences among the three dragon fruit cultivars. Among the proximate components, protein (0.40 ± 0.02 g/100 g), moisture (91.33 ± 0.88%), crude fibre (0.32 ± 0.07 g/100 g), and ash (1.27 ± 0.09 g/100 g) were more abundant in Hylocereus costaricensis than in Hylocereus undatus and Hylocereus megalanthus. On the other hand, Hylocereus undatus had higher carbohydrate (17.02 ± 0.63 g/100 g) and energy (69.74 ± 2.44 kcal/100 g) contents. K (7.23 ± 0.35 mg/100 g), Ca (1.61 ± 0.13 mg/100 g), Fe (1.84 ± 0.05 mg/100 g), and Zn (0.37 ± 0.034 mg/100 g) are highly abundant in H. costaricensis. Additionally, Hylocereus costaricensis had the highest anthocyanin content (120.15 ± 3.29 mg/g FW) and total carotenoid content (72.51 ± 1.62 mg/g FW), along with the highest vitamin C content (8.92 ± 0.13 mg/g FW) and total soluble phenolic content (572.48 ± 20.77 mg/100 g). Its remarkable antioxidant activity was further highlighted by the lowest SC50 value (13.50 ± 0.4 mg/mL) for its DPPH radical scavenging capacity. The total soluble sugar content was highest in Hylocereus megalanthus (8.72 ± 0.30 g/100 g FW). Hierarchical clustering analysis revealed distinct trait and genotype associations; among the studied cultivars, Hylocereus costaricensis demonstrated superior performance across multiple traits. Correlation analysis indicated significant positive correlations among several traits, while principal component analysis highlighted the contribution of each trait to overall variance, with PC1 explaining 73.95% of the total variance. This study highlights the nutritional variations among dragon fruit cultivars, with Hylocereus costaricensis showing superior performance, guiding dietary planning and functional food development.


Subject(s)
Antioxidants , Fruit , Nutritive Value , Antioxidants/analysis , Fruit/chemistry , Cactaceae/chemistry , Nutrients/analysis , Ascorbic Acid/analysis
4.
Int J Biol Macromol ; 276(Pt 2): 133970, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029816

ABSTRACT

Chitinase plays a vital role in the virulence of entomopathogenic fungi (EPF) when it infects host insects. We used gene recombination technology to express chitinase of three strains of Lecanicillium lecanii: Vl6063, V3450, and Vp28. The ORF of ChitVl6063, ChitV3450 and ChitVp28 were inserted into the fungal expression vector pBARGPE-1, which contained strong promoter and terminator, respectively, to construct a chitinase overpressing plasmid, then transformed the wild-type strain with blastospore transformation method. The virulence of the three recombinant strains against Toxoptera aurantii was improved by overproduction of ChitVl6063, ChitV3450, and ChitVp28, as demonstrated by significantly lower 3.43 %, 1.72 %, and 1.23 % fatal doses, respectively, according to an insect bioassay. Similarly, lethal times of recombinants (ChitVl6063, ChitV3450 and ChitVp28) were also decreased up to 29.51 %, 30.46 % and 33.90 %, respectively, compared to the wild-type strains. Improving the expression of chitinase is considered as an effective method for the enhancement of the EPF value. The efficacy could be enhanced using recombinant technology, which provides a prospecting view for future insecticidal applications.

5.
Sci Rep ; 14(1): 12854, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834735

ABSTRACT

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Subject(s)
Ferric Compounds , Gallic Acid , Salt Stress , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Gallic Acid/metabolism , Zinc/metabolism , Photosynthesis/drug effects , Nanoparticles/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Soil/chemistry
6.
Sci Rep ; 14(1): 13616, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871988

ABSTRACT

Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.


Subject(s)
Charcoal , Lactones , Raphanus , Soil Pollutants , Raphanus/drug effects , Raphanus/growth & development , Raphanus/metabolism , Lactones/pharmacology , Lactones/metabolism , Soil Pollutants/toxicity , Charcoal/chemistry , Cadmium/toxicity , Antioxidants/metabolism , Antioxidants/pharmacology , Metals, Heavy/toxicity , Oxidative Stress/drug effects , Chlorophyll/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Growth Regulators/pharmacology , Heterocyclic Compounds, 3-Ring
7.
Environ Res ; 258: 119484, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914250

ABSTRACT

The present research utilizes a sol-gel approach to create a CoFe2O4/g-C3N4 nanocomposite (NC) and explored several analytical methods to evaluate physical, chemical and optical based characteristics via XRD, FTIR, UV-vis, SEM/EDS and XPS for the prepared pure CoFe2O4, g-C3N4, and CoFe2O4/g-C3N4 NC. The XRD results show that the prepared g-C3N4, CoFe2O4, exhibits hexagonal and cubic phases respectively, whereas the g-C3N4/CoFe2O4 NC exhibit mixing of two phases. The energy band gaps for pure g-C3N4, CoFe2O4 and g-C3N4/CoFe2O4 NC values are viz., 2.75, 1.3, and 2.4 eV. As photocatalysts, synthesized materials were utilized for the decomposition of Rhodamine-B (RhB) dye. Finally, the CoFe2O4/g-C3N4 NC showed good performance of photocatalysis for RhB dye disintegration under the stimulus of visible light. According to the induced visible light, the rate at which the photocatalytic degradation occurs for the CoFe2O4/g-C3N4 NC was found to be 57% in 120 min and this is greater when compared with pure catalysts like CoFe2O4 (28%) and g-C3N4 (10%). These outcomes suggest that the prepared NC have efficiently worked during the photocatalytic process compared with its pure materials.

8.
Sci Rep ; 14(1): 10145, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698070

ABSTRACT

For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.


Subject(s)
Antioxidants , Gas Chromatography-Mass Spectrometry , Macrophages , Nitric Oxide , Plant Extracts , Saussurea , Saussurea/chemistry , Mice , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Lipopolysaccharides/pharmacology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry
9.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724910

ABSTRACT

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Subject(s)
Acetates , Antioxidants , Brassica napus , Cyclopentanes , Gibberellins , Oxylipins , Plant Growth Regulators , Soil , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Brassica napus/growth & development , Brassica napus/drug effects , Brassica napus/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology , Antioxidants/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Acetates/pharmacology , Soil/chemistry , Chlorophyll/metabolism , Salt Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Nutrients/metabolism
10.
Article in English | MEDLINE | ID: mdl-38158485

ABSTRACT

Urolithiasis or nephrolithiasis is a condition of kidney stone formation and is considered a painful disease of the urinary tract system. In this work, we planned to discover the therapeutic roles of myricetin on the ethylene glycol (EG)-induced nephrolithiasis in rats. The experimental rats were treated with 0.75% of EG through drinking water for 4 weeks to initiate the nephrolithiasis and subsequently treated with 25 and 50 mg/kg of myricetin. The body weight and urine volume were measured regularly. After the sacrification of rats, the samples were collected, and serum and urinary biomarkers such as creatinine, urea, Ca2 + ion, and BUN, OPN, oxalate, and citrate levels were determined using assay kits. These biomarkers, the MDA level and CAT, SOD, and GPx activities, were assessed in the kidney tissue homogenates. The IL-6, IL-1ß, and TNF-α levels were also quantified using respective kits. The histopathological analysis was done on the kidney tissues. Myricetin treatment did not show major changes in the body weight and kidney weight in the EG-induced rats. The treatment with 25 and 50 mg/kg of myricetin considerably reduced the urea, creatinine, BUN, Ca2 + ion, and oxalate and increased the citrate content in serum and urine samples of EG-induced rats. Further, myricetin depleted the inflammatory cytokines and MDA levels and elevated the CAT, SOD, and GPx activities in the renal tissues. The activities of ALT, AST, ALP, GGT, and LDH were also reduced by the myricetin. Furthermore, the myricetin upheld the histoarchitecture of the kidneys. The outcomes of this investigation propose that myricetin is effective in EG-induced urolithiasis probably because of its antioxidant, anti-inflammatory, and renoprotective activities. In addition, further studies are still required to verify the precise therapeutic mechanism of myricetin.

11.
Article in English | MEDLINE | ID: mdl-37665561

ABSTRACT

Allergic rhinitis (AR) is a prevalent inflammatory disease primarily affecting the nasal mucosa and is caused by allergies. The common symptoms of AR include rhinorrhea, sneezing, itchy nose, congestion, teary eyes, and nasal rubbings. The present study assessed the beneficial properties of bakuchiol on OVA-induced AR in mice via the regulation of inflammatory responses. AR was induced by injecting (i.p.) OVA (50 µg) and aluminum hydroxide (1 mg) into mice at various time intervals. The bakuchiol treatment was done at dosages of 10 and 20 mg/kg with dexamethasone (2.5 mg/kg) as a positive control. The body weight and nasal symptoms were measured on the day of the last OVA challenge. For in vitro tests, mouse splenocytes were isolated, sensitized with 20 µL OVA, and then treated with 10 µM bakuchiol. The levels of pro-inflammatory cytokines, immunoglobulins, histamine, leukotriene C4 (LTC-4), and prostaglandin D2 (PGD2) were assayed using the corresponding assay kits. The assay kits were also used to analyze the status of oxidative stress markers. The Th1/Th2 cell proportion was assessed using flow cytometry. The bakuchiol (10 and 20 mg/kg) treatment reduced the nasal symptoms in AR mice. Bakuchiol decreased the levels of IL-4, IL-5, IL-13, Igs (IgE and IgG1), histamine, IL-10, IL-33, and TNF-α in AR mice. Bakuchiol also reduced PGDA and LTC-4 levels in the NLF of AR mice. The ROS and MDA levels were decreased, whereas boosted SOD activity was observed in the bakuchiol-treated AR mice. The eosinophil count was decreased in the nasal tissues of bakuchiol-treated AR mice. Bakuchiol also influenced the Th1 and Th2 cell proportions in AR mice. The present findings suggest that bakuchiol is effective against OVA-mediated allergic and inflammatory responses in AR mice through its strong anti-inflammatory properties.

12.
Environ Res ; 231(Pt 1): 116112, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37182829

ABSTRACT

This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl 2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 µg mL-1 with the IC50 value of 47.24 and 43.40 µg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 µg mL-1 and 207.38 µg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl 2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.


Subject(s)
Antioxidants , Bignoniaceae , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Bark/chemistry , Vascular Endothelial Growth Factor Receptor-2/analysis , Vascular Endothelial Growth Factor A/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Flowers/chemistry , Solvents , Phytochemicals/analysis , Bignoniaceae/chemistry
13.
Biomed Chromatogr ; 37(8): e5645, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37052130

ABSTRACT

Herein, we report a novel, accurate and cost-effective validated analytical method for the quantification of losartan potassium and its active metabolite, EXP 3174, in rabbit plasma by reversed-phase high-performance liquid chromatography. Valsartan was used as an internal standard. The method was validated as per International Conference on Harmonization guidelines. The analytes were extracted in rabbit plasma using liquid-liquid extraction technique and analyzed at 247 nm after separation through a reverse-phase C18 column. The isocratic mobile phase used is a mixture of acetonitrile, water and glacial acetic acid in the ratio of 60:40:1 v/v/v maintained at pH 3.4. All calibration curves showed a good linear relationship (r > 0.995) within the test range. Precision was evaluated by intra- and interday tests with RSDs <1.91% and accuracy showed validated recoveries of 86.20-101.11%. Based on our results, the developed method features good quantification parameters and can serve as an effective quality control method for the standardization of drugs.


Subject(s)
Losartan , Animals , Rabbits , Losartan/analysis , Chromatography, High Pressure Liquid/methods , Valsartan , Quality Control , Reproducibility of Results
14.
Environ Res ; 219: 114965, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36502905

ABSTRACT

The majority of industrial products are identified as persistent organic pollutants after their date of expiry, which is highly harmful to the ecosystem and human health and also going to be banned around the world. Paint latex is one of those pollutants which become a hazardous waste material after stocking for a long time. Approximately 20% of color paints do not get used for their desired purpose after getting sold out and end up in a landfill. Now a day's construction industry is inclining towards the various types of geo-polymer concrete since it does not require cement. But that geo-polymer concrete has too much less workability as compared to the same grade of control cement concrete. To achieve the desired workability as well as other properties of geo-polymer concrete by using waste paint latex as performance improving admixture is the main motive of the present research. Fourteen different mixes of control and calcined clay-based geo-polymer concrete have been prepared by adding up to 3% waste paint latex of weight of cementitious materials and a detailed study has been done on various properties such as workability, rheology, shrinkage, strength and its microstructure. The presence of nanoparticles of TiO2 in waste paint latex has helped to produce extra hydration products, by which the mechanical properties, durability and microstructure of both traditional and geo-polymer concrete have increased. It has been concluded that a higher dose of waste paint latex improves the workability but the strength and durability properties of traditional and geo-polymer concrete improve up to 2-2.5% of waste paint latex replaced to water.


Subject(s)
Environmental Pollutants , Nanoparticles , Humans , Construction Materials , Latex , Ecosystem
15.
Comput Intell Neurosci ; 2022: 1391340, 2022.
Article in English | MEDLINE | ID: mdl-36156969

ABSTRACT

In the current age of technology, various diseases in the body are also on the rise. Tumours that cause more discomfort in the body are set to increase the discomfort of most patients. Patients experience different effects depending on the tumour size and type. Future developments in the medical field are moving towards the development of tools based on IoT devices. These advances will in the future follow special features designed based on multiple machine learning developed by artificial intelligence. In that order, an improved algorithm named Internet of Things-based enhanced machine learning is proposed in this paper. What makes it special is that it involves separate functions to diagnose each type of tumour. It analyzes and calculates things like the size, shape, and location of the tumour. Cure from cancer is determined by the stage at which we find cancer. Early detection of cancer has the potential to cure quickly. At a saturation point, the proposed Internet of Things-based enhanced machine learning model achieved 94.56% of accuracy, 94.12% of precision, 94.98% of recall, 95.12% of F1-score, and 1856 ms of execution time. The simulation is conducted to test the efficacy of the model, and the results of the simulation show that the proposed Internet of Things-based enhanced machine learning obtains a higher rate of intelligence than other methods.


Subject(s)
Internet of Things , Neoplasms , Algorithms , Artificial Intelligence , Humans , Internet , Machine Learning , Neoplasms/diagnosis , Neoplasms/therapy
16.
Biomed Res Int ; 2022: 2003184, 2022.
Article in English | MEDLINE | ID: mdl-35958813

ABSTRACT

Prenatal heart disease, generally known as cardiac problems (CHDs), is a group of ailments that damage the heartbeat and has recently now become top deaths worldwide. It connects a plethora of cardiovascular diseases risks to the urgent in need of accurate, trustworthy, and effective approaches for early recognition. Data preprocessing is a common method for evaluating big quantities of information in the medical business. To help clinicians forecast heart problems, investigators utilize a range of data mining algorithms to examine enormous volumes of intricate medical information. The system is predicated on classification models such as NB, KNN, DT, and RF algorithms, so it includes a variety of cardiac disease-related variables. It takes do with an entire dataset from the medical research database of patients with heart disease. The set has 300 instances and 75 attributes. Considering their relevance in establishing the usefulness of alternate approaches, only 15 of the 75 criteria are examined. The purpose of this research is to predict whether or not a person will develop cardiovascular disease. According to the statistics, naïve Bayes classifier has the highest overall accuracy.


Subject(s)
Data Mining , Heart Diseases , Algorithms , Bayes Theorem , Data Mining/methods , Heart Diseases/diagnostic imaging , Humans , Image Processing, Computer-Assisted
17.
Biomed Res Int ; 2022: 3163496, 2022.
Article in English | MEDLINE | ID: mdl-35711528

ABSTRACT

Diabetic patients can also be identified immediately utilizing retinopathy photos, but it is a challenging task. The blood veins visible in fundus photographs are used in several disease diagnosis approaches. We sought to replicate the findings published in implementation and verification of a deep learning approach for diabetic retinopathy identification in retinal fundus pictures. To address this issue, the suggested investigative study uses recurrent neural networks (RNN) to retrieve characteristics from deep networks. As a result, using computational approaches to identify certain disorders automatically might be a fantastic solution. We developed and tested several iterations of a deep learning framework to forecast the progression of diabetic retinopathy in diabetic individuals who have undergone teleretinal diabetic retinopathy assessment in a basic healthcare environment. A collection of one-field or three-field colour fundus pictures served as the input for both iterations. Utilizing the proposed DRNN methodology, advanced identification of the diabetic state was performed utilizing HE detected in an eye's blood vessel. This research demonstrates the difficulties in duplicating deep learning approach findings, as well as the necessity for more reproduction and replication research to verify deep learning techniques, particularly in the field of healthcare picture processing. This development investigates the utilization of several other Deep Neural Network Frameworks on photographs from the dataset after they have been treated to suitable image computation methods such as local average colour subtraction to assist in highlighting the germane characteristics from a fundoscopy, thus, also enhancing the identification and assessment procedure of diabetic retinopathy and serving as a skilled guidelines framework for practitioners all over the globe.


Subject(s)
Deep Learning , Diabetes Mellitus , Diabetic Retinopathy , Diabetic Retinopathy/diagnostic imaging , Fundus Oculi , Humans , Neural Networks, Computer , Photography/methods
18.
Bioinorg Chem Appl ; 2022: 8559402, 2022.
Article in English | MEDLINE | ID: mdl-35140762

ABSTRACT

In the current research, AA6082 aluminium alloy matrix composites (AAMCs) incorporated with various weight fractions of titanium diboride (0, 3, 6, and 9 wt%) were prepared via an in situ casting technique. The exothermic reaction between inorganic powders like dipotassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4) in molten Al metal contributes to the development of titanium diboride content. The manufactured AA6082-TiB2 AAMCs were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The mechanical properties and wear rate (WR) of the AAMCs were investigated. XRD guarantees the creation of TiB2 phases and proves the nonappearance of reaction products in the AMCs. SEM studies depict the even dispersion of TiB2 in the matrix alloy. The mechanical and tribological properties (MTP) of the AAMCs showed improvement by the dispersion of TiB2 particles. The WR decreases steadily with TiB2 and the least WR is seen at nine weight concentrations of TiB2/AA6082 AAMCs. Fabricated composites revealed 47.9% higher flexural strength and 14.2% superior compression strength than the base AA6082 alloy.

19.
Environ Res ; 209: 112770, 2022 06.
Article in English | MEDLINE | ID: mdl-35063432

ABSTRACT

Zerovalent Iron Nanoparticles (MC-ZVI NPs) were synthesized from Musa coocinea peel extract as reducing and stabilizing agent using a novel synthesis technique. The synthesis of MC-ZVI NPs was confirmed using UV-vis spectroscopy showing a sharp absorption peak at 341 nm. Further the chemical and structural characterization of MC-ZVI NPs were performed using Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering technique (DLS). FTIR analysis revealed the presence of phytochemical molecules associated with the MC-ZVI NPs. SEM analysis revealed the synthesized MC-ZVI NPs were in spherical shaped, while DLS analysis confirmed the synthesis of poly dispersed and non-homogenous MC-ZVI NPs. The antimicrobial efficacy of MC-ZVI NPs synthesized using Musa coccinea peel extract was tested against bacterial (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis) and fungal (Aspergillus niger) pathogens. But MC-ZVI NPs exhibited maximum of 19 mm zone of inhibition against B. subtilis and A. niger. Further the free radical scavenging activity MC-ZVI NPs was confirmed using DPPH, hydroxyl radical, hydrogen peroxide, FRAP assay showing displayed effective antioxidant activity. Thus, the present idea will give a fast and cost effective approach to synthesize MC-ZVI NPs with antimicrobial property for application in biomedical purposes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Musa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Bacillus subtilis , Iron/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
20.
Biotechnol Appl Biochem ; 69(3): 887-897, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33811673

ABSTRACT

In recent years, silver nanoparticles have been used as modern chemotherapeutic drugs to treat several cancers such as pancreatic, breast, prostate, and blood cancers. No previous reports demonstrated the in vitro anti-human pancreatic cancer effects of the novel chemotherapeutic drug formulated by silver nanoparticles containing Berberis thunbergii leaf (AgNPs). The synthesized AgNPs were characterized using different techniques including UV-vis. and FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and TEM. All techniques approved the synthesized silver nanoparticles. The SEM and TEM exhibited a uniform spherical morphology and an average size of about 15 nm for the biosynthesized nanoparticles, respectively. The 4-(dimethylamino)benzaldehyde,2,2-diphenyl-1- pikrilhydrazil (DPPH) test revealed similar antioxidant potentials for B. thunbergii leaf aqueous extract, AgNPs, and butylated hydroxytoluene. AgNPs inhibited half of the DPPH molecules in the concentration of 108 µg/mL. To survey the anti-human pancreatic cancer activities of AgNO3 , B. thunbergii leaf aqueous extract, and AgNPs, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used on common human pancreatic cancer cell lines. AgNPs had very low cell viability and anti-human pancreatic cancer effects dose-dependently against PANC-1, AsPC-1, and MIA PaCa-2. The IC50 values of the AgNPs were 259, 268, and 141 µg/mL against PANC-1, AsPC-1, and MIA PaCa-2 cell lines, respectively. It is thought that the AgNPs obtained can be used as an anticancer drug for the diagnosis of pancreatic cancer in humans after acceptance of the above findings in clinical study trials.


Subject(s)
Berberis , Metal Nanoparticles , Pancreatic Neoplasms , Humans , Metal Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Silver/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...