Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 171: 116095, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183744

ABSTRACT

Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Proteins , Humans , Squamous Cell Carcinoma of Head and Neck , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor , Immunotherapy , Biomarkers
2.
J Transl Med ; 21(1): 235, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004094

ABSTRACT

BACKGROUND: The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS: We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS: DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS: We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Male , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Antigens, Neoplasm/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immunotherapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cell Line, Tumor
3.
Microb Drug Resist ; 28(7): 824-831, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35675669

ABSTRACT

Salmonella is a major cause of foodborne disease outbreaks worldwide, mainly through poultry. Recently, there has been an increase in multidrug-resistant (MDR) Salmonella infections globally. The increased drug resistance results in increased costs and poorer health outcomes due to unavailability or delayed treatment. This study aims to determine the prevalence of Salmonella in retail raw chicken meat and identify their antimicrobial resistance profiles. A total of 270 retail raw chicken carcasses (local and imported) were collected from three hypermarket chains in Qatar between November 2017 and April 2018. Thirty carcasses were contaminated with Salmonella (11.11%). The prevalence of Salmonella in locally produced chicken was higher than in imported chicken (OR = 2.56, 95% CI: 1.18-5.53, p = 0.016). No significant differences were found between the prevalence and storage temperature or hypermarket chain. The highest resistance rates in the isolates were reported to tetracycline (73.7%) followed by nitrofurantoin (53.3%), ampicillin (50%), amoxicillin-clavulanic acid, ceftriaxone (26.7%), and ciprofloxacin (23.3%). Eight isolates were potential extended-spectrum ß-lactamase-producers, all in imported frozen chicken (p < 0.0001). Additionally, 43.3% of the isolates were MDR and associated with frozen chicken (OR = 16.88, 95% CI: 2.55-111.47, p = 0.002). The findings indicate that while the prevalence of Salmonella in retail chicken in Qatar is moderate, a large proportion of them are MDR.


Subject(s)
Chickens , Drug Resistance, Multiple, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Meat , Microbial Sensitivity Tests , Prevalence , Salmonella
SELECTION OF CITATIONS
SEARCH DETAIL
...