Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 72484-72502, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37171734

ABSTRACT

The present research investigates the performance of bentonite clay@biochar@Fe3O4 nanocomposite in removing mercury ions (Hg2+) from aqueous media. The physical and structural properties of bentonite clay@biochar@Fe3O4 were determined using Brunauer-Emmett-Teller (BET), vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and Raman analyses. The highest uptake efficiency of Hg2+ was obtained at pH 6, Hg2+ concentration of 10 mg/L, contact time of 80 min, and the composite dose of 1.5 g/L. Under these conditions, the uptake efficiency of bentonite clay@biochar@Fe3O4 and bentonite clay was obtained as 98.78% and 97.67%, respectively, which are remarkable values. Also, the qmax values in Hg2+ removal using bentonite clay@biochar@Fe3O4 and bentonite clay were obtained as 66.66 and 60.98 mg/g, respectively. Moreover, the uptake process of Hg2+ ions using bentonite clay@biochar@Fe3O4 nanocomposite and bentonite was spontaneous, physical, favorable, and exothermic. Besides, the impact of various divalent ions such as Co2+, Cu2+, Pb2+, Ni2+, and Zn2+ on the removal efficiency of Hg2+ was studied. The results showed that Co2+ and Zn2+ ions have the highest and lowest interference effect in Hg2+ removal, respectively. Also, the reusability of both adsorbents showed that they have high stability and can be used for at least 5 cycles with high uptake efficiency. Additionally, the removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), Hg2+, As3+, and As5+ from real wastewater using bentonite clay@biochar@Fe3O4 was obtained as 37.5%, 28.9%, 65%, 60.5%, and 50%, respectively, indicating its remarkable performance.


Subject(s)
Mercury , Nanocomposites , Water Pollutants, Chemical , Clay , Bentonite/chemistry , Wastewater , Adsorption , Nanocomposites/chemistry , Mercury/analysis , Ions/analysis , Water Pollutants, Chemical/analysis , Kinetics
2.
Chemosphere ; 319: 137847, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36657576

ABSTRACT

Renewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO2 emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO2 (SCO2) cycle. In this study, two methods for using biomass are considered: the first is using synthesis gas generated by the gasifier, and the second is utilizing a digester to generate biogas. A comprehensive parametric study is performed on the designed energy unit to assess the influence of compressor pressure ratio, Gas turbine inlet temperature, supercritical CO2 cycle pressure ratio, and the number of effects of multi-effect distillation on the system performance. Furthermore, the exergy study revealed that the exergy destruction in the digestion unit was 11,337 kW, which was greater than the exergy destruction in the gasification unit, which was 9629. Finally, when compared to the gasifier, the amount of exergy efficiency, net output power, and freshwater production in the digester was greater.


Subject(s)
Carbon Dioxide , Fresh Water , Carbon Dioxide/analysis , Biomass , Temperature , Biofuels
3.
Chemosphere ; 319: 137950, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36702420

ABSTRACT

In the present work, an efficient metal organic framework/graphene oxide (MOF-801/GO) sorbent was fabricated and employed for the detection of organosulfur pesticides (OSPs) in real samples using gas chromatography-flame photometric detection (GC-FPD). The optimal extraction parameters for the suggested solid-phase extraction (SPE) include sorbent amount (60 mg), extraction solvent (acetonitrile) and extraction time (5 min). The linear dynamic ranges and detection limits for organosulfur pesticides (OSPs) samples under above extraction conditions were ranged from 0.5 to 300 µg L-1 and 0.1-1.1 µg L-1, respectively. Moreover, the proposed SPE/GC-FDP method was applied for the analysis of pesticides in different real environmental water and soil samples. The obtained recoveries of the analytes in were between 92.0 and 106.8% and relative standard deviation (RSD) values were lower than 9.2%. The application of the MOF-801/GO as a sorbent in dSPE of OSPs analytes showed to be reliable, fast and sensible methodology for pesticides monitoring in different environmental samples.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Pesticides , Water/analysis , Limit of Detection , Pesticides/analysis , Solid Phase Extraction/methods , Sulfur Compounds , Soil
4.
Environ Sci Pollut Res Int ; 30(7): 18419-18437, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36210408

ABSTRACT

In this study, hydroxyapatite@Mn-Fe composite was used as a novel adsorbent to eliminate Nile blue (NB) dye and hexavalent chromium ion (Cr(VI)) from aqueous media. Different analyses such as FTIR, Map, SEM, EDX, BET, and XRD were used to study the characteristics of the composite. The highest sorption efficiencies of Cr(VI) and NB at pH 2 and 10 were 97.63% and 98.83%, respectively, which are significant values. Equilibrium and kinetic studies of the sorption process showed that the Freundlich isotherm model and pseudo-second-order kinetic model can better describe the equilibrium and kinetic behavior of the sorption process. According to the Langmuir model, the maximum sorption capacities of NB dye and Cr(VI) ion using the hydroxyapatite@Mn-Fe composite were 0.259 and 0.938 mmol/g, respectively. Also, the results of the thermodynamic study showed that the sorption process is favorable (ΔS° = - 34.2 kJ/mol·K for Cr(VI) and - 144.6 kJ/mol·K for NB), spontaneous (ΔG° < 0), and exothermic (ΔH° = - 27.99 kJ/mol for Cr(VI) and - 64.2 kJ/mol for NB). Moreover, the desorption process of both contaminants using the hydroxyapatite@Mn-Fe composite showed that the H2SO4 solution with a concentration of 3 mol/L can remove both contaminants separately with the highest efficiency. Furthermore, the reusability study indicated that the composite can be used in five reuse cycles without significant decrease in its efficiency. Besides, the composite was able to eliminate color, turbidity, COD, and BOD5 from the textile wastewater with removal efficiencies of 93.06, 81.61, 76.05, and 71.88%, respectively. To the best of our knowledge, hydroxyapatite@Mn-Fe composite was synthesized and used for the first time to remove Cr(VI) ions and NB dye. In general, the aforementioned composite is recommended for industrial wastewater treatment.


Subject(s)
Water Pollutants, Chemical , Kinetics , Water Pollutants, Chemical/analysis , Adsorption , Hydrogen-Ion Concentration , Chromium/analysis , Ions , Hydroxyapatites
5.
Sci Rep ; 9(1): 15511, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31664181

ABSTRACT

The elements constituting a layered double hydroxides material provide many alternatives for its optimization. Ten different layered double hydroxides materials with various combinations of Ni, Cu, Zn, Al, Cr, and Fe elements were studied as sorbent materials for phosphate ion. The type of element used in the layered double hydroxides affected the uptake capacity of phosphate. The influence of a specific element alone was not the primary role of enhancing the sorption performance of phosphate ion on the LDHs material. However, using specific two or three elements together is the key to achieve the best result due to synergistic effects. BET surface area of the sorbent showed no correlation with phosphate uptake. From the examined materials, Four layered double hydroxides of Cu-Zn-Cr, Zn-Cr, Ni-Al, and Cu-Ni-Cr showed high phosphate sorption capability. Sorption equilibrium isotherm, reaction kinetics, and desorption of phosphate from the sorbent materials were also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL