Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212772

ABSTRACT

Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate-glutathione (AsA-GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.


Subject(s)
Melatonin/pharmacology , Metals, Heavy/toxicity , Plants/metabolism , Salinity , Soil/chemistry , Stress, Physiological , Hydrogen-Ion Concentration , Plants/drug effects , Stress, Physiological/drug effects
2.
World J Microbiol Biotechnol ; 30(2): 469-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23990042

ABSTRACT

Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice.


Subject(s)
Antibiosis , Biofilms/growth & development , Brevibacillus/physiology , Comamonadaceae/drug effects , Comamonadaceae/physiology , Oryza/microbiology , Plant Diseases/microbiology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Brevibacillus/metabolism , Locomotion/drug effects , Plant Diseases/prevention & control , Virulence/drug effects , Virulence Factors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...