Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Hum Factors ; 9(1): e31021, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35289755

ABSTRACT

BACKGROUND: Big data research in the field of health sciences is hindered by a lack of agreement on how to identify and define different conditions and their medications. This means that researchers and health professionals often have different phenotype definitions for the same condition. This lack of agreement makes it difficult to compare different study findings and hinders the ability to conduct repeatable and reusable research. OBJECTIVE: This study aims to examine the requirements of various users, such as researchers, clinicians, machine learning experts, and managers, in the development of a data portal for phenotypes (a concept library). METHODS: This was a qualitative study using interviews and focus group discussion. One-to-one interviews were conducted with researchers, clinicians, machine learning experts, and senior research managers in health data science (N=6) to explore their specific needs in the development of a concept library. In addition, a focus group discussion with researchers (N=14) working with the Secured Anonymized Information Linkage databank, a national eHealth data linkage infrastructure, was held to perform a SWOT (strengths, weaknesses, opportunities, and threats) analysis for the phenotyping system and the proposed concept library. The interviews and focus group discussion were transcribed verbatim, and 2 thematic analyses were performed. RESULTS: Most of the participants thought that the prototype concept library would be a very helpful resource for conducting repeatable research, but they specified that many requirements are needed before its development. Although all the participants stated that they were aware of some existing concept libraries, most of them expressed negative perceptions about them. The participants mentioned several facilitators that would stimulate them to share their work and reuse the work of others, and they pointed out several barriers that could inhibit them from sharing their work and reusing the work of others. The participants suggested some developments that they would like to see to improve reproducible research output using routine data. CONCLUSIONS: The study indicated that most interviewees valued a concept library for phenotypes. However, only half of the participants felt that they would contribute by providing definitions for the concept library, and they reported many barriers regarding sharing their work on a publicly accessible platform. Analysis of interviews and the focus group discussion revealed that different stakeholders have different requirements, facilitators, barriers, and concerns about a prototype concept library.

2.
Int J Popul Data Sci ; 6(1): 1362, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34189274

ABSTRACT

INTRODUCTION: Electronic health records (EHR) are linked together to examine disease history and to undertake research into the causes and outcomes of disease. However, the process of constructing algorithms for phenotyping (e.g., identifying disease characteristics) or health characteristics (e.g., smoker) is very time consuming and resource costly. In addition, results can vary greatly between researchers. Reusing or building on algorithms that others have created is a compelling solution to these problems. However, sharing algorithms is not a common practice and many published studies do not detail the clinical code lists used by the researchers in the disease/characteristic definition. To address these challenges, a number of centres across the world have developed health data portals which contain concept libraries (e.g., algorithms for defining concepts such as disease and characteristics) in order to facilitate disease phenotyping and health studies. OBJECTIVES: This study aims to review the literature of existing concept libraries, examine their utilities, identify the current gaps, and suggest future developments. METHODS: The five-stage framework of Arksey and O'Malley was used for the literature search. This approach included defining the research questions, identifying relevant studies through literature review, selecting eligible studies, charting and extracting data, and summarising and reporting the findings. RESULTS: This review identified seven publicly accessible Electronic Health data concept libraries which were developed in different countries including UK, USA, and Canada. The concept libraries (n = 7) investigated were either general libraries that hold phenotypes of multiple specialties (n = 4) or specialized libraries that manage only certain specialities such as rare diseases (n = 3). There were some clear differences between the general libraries such as archiving data from different electronic sources, and using a range of different types of coding systems. However, they share some clear similarities such as enabling users to upload their own code lists, and allowing users to use/download the publicly accessible code. In addition, there were some differences between the specialized libraries such as difference in ability to search, and if it was possible to use different searching queries such as simple or complex searches. Conversely, there were some similarities between the specialized libraries such as enabling users to upload their own concepts into the libraries and to show where they were published, which facilitates assessing the validity of the concepts. All the specialized libraries aimed to encourage the reuse of research methods such as lists of clinical code and/or metadata. CONCLUSION: The seven libraries identified have been developed independently and appear to replicate similar concepts but in different ways. Collaboration between similar libraries would greatly facilitate the use of these libraries for the user. The process of building code lists takes time and effort. Access to existing code lists increases consistency and accuracy of definitions across studies. Concept library developers should collaborate with each other to raise awareness of their existence and of their various functions, which could increase users' contributions to those libraries and promote their wide-ranging adoption.


Subject(s)
Electronic Health Records , Libraries , Data Collection , Publications , Research Report
SELECTION OF CITATIONS
SEARCH DETAIL
...