Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 10(1): 4859, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649270

ABSTRACT

An invisibility cloak should completely hide an object from an observer, ideally across the visible spectrum and for all angles of incidence and polarizations of light, in three dimensions. However, until now, all such devices have been limited to either small bandwidths or have disregarded the phase of the impinging wave or worked only along specific directions. Here, we show that these seemingly fundamental restrictions can be lifted by using cloaks made of fast-light media, termed tachyonic cloaks, where the wave group velocity is larger than the speed of light in vacuum. On the basis of exact analytic calculations and full-wave causal simulations, we demonstrate three-dimensional cloaking that cannot be detected even interferometrically across the entire visible regime. Our results open the road for ultrabroadband invisibility of large objects, with direct implications for stealth and information technology, non-disturbing sensors, near-field scanning optical microscopy imaging, and superluminal propagation.

3.
Nanotechnology ; 26(8): 085301, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25648611

ABSTRACT

In this work we investigate both experimentally and theoretically the optical properties of aligned, perpendicular to the substrate, high aspect ratio (AR), plasma etched Si nanowires (SiNWs) with controlled variability. We focus on the role of imperfections in fabrication, which manifest themselves as dimensional variability of SiNW, lattice defects or positional randomization. SiNW arrays are fabricated by e-beam lithography (perfectly ordered array) or colloidal particle self-assembly (quasi-ordered array) followed by cryogenic Si plasma etching, which offers fast etch rate (up to 3 µm min(-1)) combined with clean, smooth, and controllable sidewall profile, but induces some dimensional variability on the diameters of the SiNWs. Sub-200 nm diameter SiNWs having AR as high as 37:1 are demonstrated. The total reflectance of SiNWs is below 2% in a wide range of the optical spectrum. We experimentally demonstrate improved light absorption when moving from a perfectly ordered (after e-beam lithography) to a defective and quasi-ordered (after colloidal self-assembly) SiNW array. In addition our measured reflectivity (for both ordered and quasi-ordered SiNWs) is much lower compared to the one predicted theoretically for a perfect SiNWs array, using full-electrodynamic calculations with the layer-multiple-scattering method. To explain such low reflectivity, we model the influence of disorder using the average T-matrix approximation and show that even small dimensional variability (10-20%) leads to dramatic reduction of the reflectance (matching the experimental results) and increased light trapping inside the SiNW justifying their possible application in photovoltaic devices.

4.
Opt Lett ; 37(22): 4624-6, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164859

ABSTRACT

We study, by means of full-electrodynamic calculations using the layer-multiple-scattering method, the effect of diffractive coupling on the enhancement of the local electromagnetic field in periodic arrays of nanolenses consisting of three silver spheres with progressively decreasing sizes and separations. The interaction between the hot-spot modes of an isolated nanolens with the Rayleigh-Wood anomalies of the periodic lattice leads to a further enhancement of the local field intensity, which can be controlled by an appropriate choice of the geometrical parameters involved.

SELECTION OF CITATIONS
SEARCH DETAIL
...