Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1248441, 2023.
Article in English | MEDLINE | ID: mdl-37744257

ABSTRACT

Optically pure lactic acid (LA) is needed in PLA (poly-lactic acid) production to build a crystalline structure with a higher melting point of the biopolymer than that of the racemic mixture. Lignocellulosic biomass can be used as raw material for LA production, in a non-food biorefinery concept. In the present study, genetically engineered P. acidilactici ZP26 was cultivated in a simultaneous saccharification and fermentation (SSF) process using steam pretreated softwood solids as a carbon source to produce optically pure D-LA. Given the low concentrations of identifiable inhibitory compounds from sugar and lignin degradation, the fermentation rate was expected to follow the rate of enzymatic hydrolysis. However, added pretreated solids (7% on weight (w/w) of water-insoluble solids [WIS]) significantly and immediately affected the process performance, which resulted in a long lag phase (more than 40 h) before the onset of the exponential phase of the fermentation. This unexpected delay was also observed without the addition of enzymes in the SSF and in a model fermentation with glucose and pretreated solids without added enzymes. Experiments showed that it was possible to overcome the extended lag phase in the presence of pretreated softwood solids by allowing the microorganism to initiate its exponential phase in synthetic medium, and subsequently adding the softwood solids and enzymatic blend to proceed to an SSF with D-LA production.

2.
Polymers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631876

ABSTRACT

A crucial step in the chemical delignification of wood is the transport of lignin fragments into free liquor; this step is believed to be the rate-limiting step. This study has investigated the diffusion of kraft lignin molecules through model cellulose membranes of various pore sizes (1-200 nm) by diffusion cells, where the lignin molecules diffuse from donor to acceptor cells through a membrane, where diffusion rate increases by pore size. UV-vis spectra of the donor solutions showed greater absorbance at higher wavelengths (~450 nm), which was probably induced by scattering due to presence of large molecules/clusters, while acceptor samples passed through small pore membranes did not. The UV-vis spectra of acceptor solutions show a characteristic peak at around 350 nm, which corresponds to ionized conjugated molecules: indicating that a chemical fractionation has occurred. Size exclusion chromatography (SEC) showed a difference in the molecular weight (Mw) distribution between lignin from the donor and acceptor chambers. The results show that small pore sizes enable the diffusion of small individual molecules and hinder the transport of large lignin molecules or possible lignin clusters. This study provides more detail in understanding the mass transfer events of pulping processes.

3.
Biotechnol Biofuels Bioprod ; 15(1): 22, 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35219341

ABSTRACT

BACKGROUND: Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS: The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS: The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.

4.
Metab Eng ; 55: 1-11, 2019 09.
Article in English | MEDLINE | ID: mdl-31150803

ABSTRACT

The most prevalent xylose-assimilating pathways in recombinant Saccharomyces cerevisiae, i.e. the xylose isomerase (XI) and the xylose reductase/xylitol dehydrogenase (XR/XDH) pathways, channel the carbon flux through the pentose phosphate pathway and further into glycolysis. In contrast, the oxidative and non-phosphorylative bacterial Weimberg pathway channels the xylose carbon through five steps into the metabolic node α-ketoglutarate (αKG) that can be utilized for growth or diverted into production of various metabolites. In the present study, steps preventing the establishment of a functional Weimberg pathway in S. cerevisiae were identified. Using an original design where a S. cerevisiae strain was expressing the essential four genes of the Caulobacter crescentus pathway (xylB, xylD, xylX, xylA) together with a deletion of FRA2 gene to upregulate the iron-sulfur metabolism, it was shown that the C. crescentus αKG semialdehyde dehydrogenase, XylA was not functional in S. cerevisiae. When replaced by the recently described analog from Corynebacterium glutamicum, KsaD, significantly higher in vitro activity was observed but the strain did not grow on xylose. Adaptive laboratory evolution (ALE) on a xylose/glucose medium on this strain led to a loss of XylB, the first step of the Weimberg pathway, suggesting that ALE favored minimizing the inhibiting xylonate accumulation by restricting the upper part of the pathway. Therefore three additional gene copies of the lower Weimberg pathway (XylD, XylX and KsaD) were introduced. The resulting S. cerevisiae strain (ΔΔfra2, xylB, 4x (xylD-xylX-ksaD)) was able to generate biomass from xylose and Weimberg pathway intermediates were detected. To our knowledge this is the first report of a functional complete Weimberg pathway expressed in fungi. When optimized this pathway has the potential to channel xylose towards value-added specialty chemicals such as dicarboxylic acids and diols.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Xylose/metabolism , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , D-Xylulose Reductase/genetics , D-Xylulose Reductase/metabolism , Microorganisms, Genetically-Modified , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Xylose/genetics
5.
AMB Express ; 8(1): 33, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29508097

ABSTRACT

Engineering of the yeast Saccharomyces cerevisiae towards efficient D-xylose assimilation has been a major focus over the last decades since D-xylose is the second most abundant sugar in nature, and its conversion into products could significantly improve process economy in biomass-based processes. Up to now, two different metabolic routes have been introduced via genetic engineering, consisting of either the isomerization or the oxido-reduction of D-xylose to D-xylulose that is further connected to the pentose phosphate pathway and glycolysis. In the present study, cytosolic D-xylose oxidation was investigated instead, through the introduction of the Weimberg pathway from Caulobacter crescentus in S. cerevisiae. This pathway consists of five reaction steps that connect D-xylose to the TCA cycle intermediate α-ketoglutarate. The corresponding genes could be expressed in S. cerevisiae, but no growth was observed on D-xylose indicating that not all the enzymes were functionally active. The accumulation of the Weimberg intermediate D-xylonate suggested that the dehydration step(s) might be limiting, blocking further conversion into α-ketoglutarate. Although four alternative dehydratases both of bacterial and archaeon origins were evaluated, D-xylonate accumulation still occurred. A better understanding of the mechanisms associated with the activity of dehydratases, both at a bacterial and yeast level, appears essential to obtain a fully functional Weimberg pathway in S. cerevisiae.

6.
Biosci Biotechnol Biochem ; 81(6): 1078-1080, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28485215

ABSTRACT

An ultra-high performance liquid chromatography (UHPLC) based method for the analysis of d-xylonate was developed using an amide column in combination with an evaporative light scattering (ELS) detector. Separation of d-xylonate from other components of the fermentation medium was achieved. The dynamic range of the method was 0.2-7.0 g/L.


Subject(s)
Amino Acids/isolation & purification , Chromatography, High Pressure Liquid/methods , Sugar Acids/isolation & purification , Chromatography, High Pressure Liquid/instrumentation , Dynamic Light Scattering , Fermentation , Limit of Detection , Saccharomyces cerevisiae/metabolism , Volatilization
7.
J Ind Microbiol Biotechnol ; 43(8): 1117-30, 2016 08.
Article in English | MEDLINE | ID: mdl-27255975

ABSTRACT

Succinic acid production from the monosaccharides xylose, arabinose, glucose, mannose and galactose was studied using the bacterium Actinobacillus succinogenes. In Duran bottle cultures, containing 10 g/L of each of sugar, succinic acid was produced from all sugars except for galactose. The highest succinate yield, 0.56 g/g, was obtained with glucose, whereas the succinate yield was 0.42, 0.38 and 0.44 g/g for xylose, mannose and arabinose, respectively. The specific succinate productivity was 0.7 g/g h for glucose, but below 0.2 g/g h for the other sugars. Batch bioreactor fermentations were carried out using a sugar mixture of the five sugars giving a total concentration of 50 g/L, mimicking the distribution of sugars in spent sulfite liquor (SSL) from Eucalyptus which is rich in xylose. In this mixture, an almost complete conversion of all sugars (except galactose) was achieved resulting in a final succinate concentration of 21.8-26.8 g/L and a total yield of 0.59-0.68 g/g. There was evidence of co-consumption of glucose and xylose, whereas mannose was consumed after glucose. The main by-products were acetate 0.14-0.20 g/g and formate 0.08-0.13 g/g. NADH balance calculations suggested that NADH required for succinate production was not met solely from formate and acetate production, but other means of NADH production was necessary. Results from mixed sugar fermentations were verified using SSL as substrate resulting in a succinate yield of 0.60 g/g. In addition, it was found that CO2 sparging could replace carbonate supply in the form of MgCO3 without affecting the succinate yield.


Subject(s)
Actinobacillus/metabolism , Carbohydrate Metabolism , Fermentation , Succinic Acid/metabolism , Bioreactors , Glucose/metabolism
8.
Appl Microbiol Biotechnol ; 98(17): 7299-318, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24970456

ABSTRACT

Carboxylic acids are important bulk chemicals that can be used as building blocks for the production of polymers, as acidulants, preservatives and flavour compound or as precursors for the synthesis of pharmaceuticals. Today, their production mainly takes place through catalytic processing of petroleum-based precursors. An appealing alternative would be to produce these compounds from renewable resources, using tailor-made microorganisms. Saccharomyces cerevisiae has already demonstrated its value for bioethanol production from renewable resources. In this review, we discuss Saccharomyces cerevisiae engineering potential, current strategies for carboxylic acid production as well as the specific challenges linked to the use of lignocellulosic biomass as carbon source.


Subject(s)
Carboxylic Acids/metabolism , Lignin/metabolism , Saccharomyces cerevisiae/metabolism , Biotransformation , Metabolic Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...