Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 158: 104855, 2020 08.
Article in English | MEDLINE | ID: mdl-32438036

ABSTRACT

Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.


Subject(s)
Opioid Peptides/physiology , Opioid Peptides/therapeutic use , Animals , Humans , Interleukin 1 Receptor Antagonist Protein/drug effects , Neoplasms/drug therapy , Opioid Peptides/chemistry , Receptors, Opioid/drug effects , Renin-Angiotensin System/drug effects
2.
Biomolecules ; 10(3)2020 03 23.
Article in English | MEDLINE | ID: mdl-32210030

ABSTRACT

Angiotensin-I converting enzyme (ACE) is a zinc metallopeptidase that has an important role in regulating the renin-angiotensin-aldosterone system (RAAS). It is also an important drug target for the management of cardiovascular diseases. Hemorphins are endogenous peptides that are produced by proteolytic cleavage of beta hemoglobin. A number of studies have reported various therapeutic activities of hemorphins. Previous reports have shown antihypertensive action of hemorphins via the inhibition of ACE. The sequence of hemorphins is highly conserved among mammals, except in camels, which harbors a unique Q>R variation in the peptide. Here, we studied the ACE inhibitory activity of camel hemorphins (LVVYPWTRRF and YPWTRRF) and non-camel hemorphins (LVVYPWTQRF and YPWTQRF). Computational methods were used to determine the most likely binding pose and binding affinity of both camel and non-camel hemorphins within the active site of ACE. Molecular dynamics simulations showed that the peptides interacted with critical residues in the active site of ACE. Notably, camel hemorphins showed higher binding affinity and sustained interactions with all three subsites of the ACE active site. An in vitro ACE inhibition assay showed that the IC50 of camel hemorphins were significantly lower than the IC50 of non-camel hemorphins.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Camelus , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptidyl-Dipeptidase A/chemistry , Animals , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...