Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Oncol Rep ; 42(2): 763-774, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31173253

ABSTRACT

Multidrug resistance to anticancer drugs, which is often associated with enhanced expression of the ATP­binding cassette (ABC) transporter P­glycoprotein (encoded by the ABCB1 gene) may limit the effects of cancer therapy. Epigenetic regulation of ABCB1 expression may thus have a clinical impact. A detailed assessment of ABCB1 promoter methylation is of importance for predicting therapy outcome and prognosis. Thus, validated methods for the analysis of ABCB1 promoter methylation are urgently required. In the present study, high­resolution melting (HRM) analysis of the CpG island regions covering the distal promoter of the ABCB1 gene was developed and compared with pyrosequencing. In addition, the clinical effects of the methylation status of the ABCB1 promoter were analyzed in patients with breast and ovarian carcinoma prior and subsequent to chemotherapy treatment. HRM analysis of ABCB1 methylation correlated with the results of pyrosequencing (P=0.001) demonstrating its analytical validity and utility. Hypermethylation of the analyzed ABCB1 promoter region was significantly correlated with low levels of the ABCB1 transcript in tumors from a subset of patients with breast and ovarian carcinoma prior to chemotherapy but not following treatment. Finally, high ABCB1 transcript levels were observed in tumors of patients with short progression­free survival prior to chemotherapy. Our data suggest the existence of functional epigenetic changes in the ABCB1 gene with prognostic value in tumor tissues of patients with breast and ovarian carcinoma. The clinical importance of such changes should be further evaluated.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , DNA Methylation , Ovarian Neoplasms/pathology , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , ATP Binding Cassette Transporter, Subfamily B/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Epigenesis, Genetic , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Nucleic Acid Denaturation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Prognosis , Retrospective Studies , Survival Rate
2.
Breast Cancer Res ; 19(1): 125, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29183390

ABSTRACT

BACKGROUND: Controversies exist as to whether the genetic polymorphisms of the enzymes responsible for the metabolism of tamoxifen can predict breast cancer outcome in patients using adjuvant tamoxifen. Direct measurement of concentrations of active tamoxifen metabolites in serum may be a more biological plausible and robust approach. We have investigated the association between CYP2D6 genotypes, serum concentrations of active tamoxifen metabolites, and long-term outcome in tamoxifen treated breast cancer patients. METHODS: From an original observational study comprising 817 breast cancer patients, 99 women with operable breast cancer were retrospectively included in the present study. This cohort of patients were adjuvantly treated with tamoxifen, had provided serum samples suitable for measuring tamoxifen metabolites, and were relapse-free at 3 years after the primary treatment commenced. The median follow-up time from this entry point to breast cancer death was 13.9 years. Patients were CYP2D6 genotyped and grouped into four CYP2D6 phenotype groups (Ultra rapid, extensive, intermediate, and poor metabolizers). Tamoxifen and nine metabolites were quantified in serum (n = 86) and compared with CYP2D6 phenotype groups and outcome. RESULTS: Breast cancer patients with low concentrations of Z-4-hydroxy-tamoxifen (Z-4OHtam; ≤ 3.26 nM) had a breast cancer-specific survival (BCSS) of 60% compared to 84% in patients with Z-4OHtam concentrations > 3.26 nM (p = 0.020, log-rank hazard ratio (HR) = 3.56, 95% confidence interval (CI) = 1.14-11.07). For patients with Z-4-hydroxy-N-desmethyl-tamoxifen (Z-endoxifen) levels ≤ 9.00 nM BCSS was 57% compared to 84% for patients with concentrations > 9.00 nM (p = 0.029, HR = 3.73, 95% CI = 1.05-13.22). Low concentrations of Z-4OHtam and Z-endoxifen were associated with poorer survival also after adjusting for clinically relevant variables (HR = 4.27, 95% CI = 1.35-13.58, and HR = 3.70, 95% CI = 1.03-13.25, respectively). Overall survival analysis showed similar survival differences for both active metabolites. The Antiestrogen Activity Score showed comparable effects, but did not improve the prognostic information. CONCLUSIONS: Patients with Z-4OHtam and Z-endoxifen concentrations lower than 3.26 nM or 9.00 nM, respectively, showed an adverse outcome. Our results suggest that direct measurement of active tamoxifen metabolite concentrations could be of clinical value. Validation in larger study cohorts is warranted.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Breast Neoplasms/blood , Breast Neoplasms/mortality , Tamoxifen/pharmacokinetics , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Chemotherapy, Adjuvant , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Female , Humans , Middle Aged , Neoplasm Grading , Pharmacogenomic Variants , Prognosis , Retrospective Studies , Tamoxifen/therapeutic use
3.
Sci Rep ; 7(1): 5568, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717182

ABSTRACT

Cancer cells can have different patterns of exon usage of individual genes when compared to normal tissue, suggesting that alternative splicing may play a role in shaping the tumor phenotype. The discovery and identification of gene variants has increased dramatically with the introduction of RNA-sequencing technology, which enables whole transcriptome analysis of known, as well as novel isoforms. Here we report alternative splicing and transcriptional events among subtypes of invasive ductal carcinoma in The Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Alternative exon usage was widespread, and although common events were shared among three subtypes, ER+ HER2-, ER- HER2-, and HER2+, many events on the exon level were subtype specific. Additional RNA-seq analysis was carried out in an independent cohort of 43 ER+ HER2- and ER- HER2- primary breast tumors, confirming many of the exon events identified in the TCGA cohort. Alternative splicing and transcriptional events detected in five genes, MYO6, EPB41L1, TPD52, IQCG, and ACOX2 were validated by qRT-PCR in a third cohort of 40 ER+ HER2- and ER- HER2- patients, showing that these events were truly subtype specific.


Subject(s)
Alternative Splicing , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Gene Expression Profiling/methods , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Cohort Studies , Databases, Genetic , Exons , Female , Gene Expression Regulation, Neoplastic , Humans , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Sequence Analysis, RNA/methods
4.
Oncotarget ; 8(1): 1074-1082, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27911866

ABSTRACT

Breast cancer patients with Luminal A disease generally have a good prognosis, but among this patient group are patients with good prognosis that are currently overtreated with adjuvant chemotherapy, and also patients that have a bad prognosis and should be given more aggressive treatment. There is no available method for subclassification of this patient group. Here we present a DNA methylation signature (SAM40) that segregates Luminal A patients based on prognosis, and identify one good prognosis group and one bad prognosis group. The prognostic impact of SAM40 was validated in four independent patient cohorts. Being able to subdivide the Luminal A patients may give the two-sided benefit of identifying one subgroup that may benefit from a more aggressive treatment than what is given today, and importantly, identifying a subgroup that may benefit from less treatment.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/mortality , DNA Methylation , Transcriptome , Breast Neoplasms/pathology , Cluster Analysis , Epigenesis, Genetic , Epigenomics/methods , Female , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Prognosis
5.
Oncotarget ; 7(49): 80140-80163, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27792995

ABSTRACT

There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Chromosomes, Human, Pair 4 , Polymorphism, Single Nucleotide , Breast Neoplasms/pathology , Canada , Carrier Proteins/genetics , Case-Control Studies , DNA Helicases/genetics , Europe , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Mitochondrial Proteins/genetics , Odds Ratio , Phenotype , Quantitative Trait Loci , Risk Assessment , Risk Factors
6.
BMC Cancer ; 15: 978, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674097

ABSTRACT

BACKGROUND: Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. METHODS: We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p<0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. RESULTS: rs878156 in PARP2 showed a differential effect by chemotherapy (p=0.093) and was replicated in BCAC studies (p=0.009; combined analysis p=0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency=0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR)=0.75, 95% 0.53-1.07) and poorer survival when not treated with chemotherapy (HR=1.42, 95% 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR=0.73, 95% CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. CONCLUSIONS: Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Aged , Breast Neoplasms/mortality , Chemotherapy, Adjuvant , Female , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Postmenopause , Prognosis , Proportional Hazards Models , Radiotherapy
7.
Genes (Basel) ; 6(3): 878-900, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26393654

ABSTRACT

Altered DNA methylation patterns are found in many diseases, particularly in cancer, where the analysis of DNA methylation holds the promise to provide diagnostic, prognostic and predictive information of great clinical value. Methylation of the promoter-associated CpG island of GSTP1 occurs in many hormone-sensitive cancers, has been shown to be a biomarker for the early detection of cancerous lesions and has been associated with important clinical parameters, such as survival and response to treatment. In the current manuscript, we assessed the performance of several widely-used sodium bisulfite conversion-dependent methods (methylation-specific PCR, MethyLight, pyrosequencing and MALDI mass-spectrometry) for the analysis of DNA methylation patterns in the GSTP1 promoter. We observed large discordances between the results obtained by the different technologies. Cloning and sequencing of the investigated region resolved single-molecule DNA methylation patterns and identified heterogeneous DNA methylation patterns as the underlying cause of the differences. Heterogeneous DNA methylation patterns in the GSTP1 promoter constitute a major obstacle to the implementation of DNA methylation-based analysis of GSTP1 and might explain some of the contradictory findings in the analysis of the significance of GSTP1 promoter methylation in breast cancer.

8.
BMC Cancer ; 15: 524, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26183823

ABSTRACT

BACKGROUND: Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant transcripts may play a role in the tumor phenotype. METHODS: Ribonucleic acid-sequencing (RNA-seq) data from breast cancer samples was used to identify an intronic start variant transcript of Acyl-CoA oxidase 2, ACOX2 (ACOX2-i9). Difference in expression between Estrogen Receptor (ER) positive and ER negative patients was assessed by the Wilcoxon rank sum test, and the findings validated in The Cancer Genome Atlas (TCGA) breast cancer dataset (BRCA). ACOX2-i9 expression was also assessed in cell lines using both quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Knock down by short hairpin RNA (shRNA) and colony formation assays were used to determine whether ACOX2-i9 expression would influence cellular fitness. The effect of ACOX2-i9 expression on patient survival was assessed by the Kaplan-Meier survival function, and association to clinical parameters was analyzed using a Fisher exact test. RESULTS: The expression and translation of ACOX2-i9 into a 25 kDa protein was demonstrated in HepG2 cells as well as in several breast cancer cell lines. shRNA knock down of the ACOX2-i9 variant resulted in decreased cell viability of T47D and MDA-MB 436 cells. Moreover, expression of ACOX2-i9 was shown to be estrogen regulated, being induced by propyl pyrazoletriol and inhibited by tamoxifen and fulvestrant in ER+ T47D and Mcf-7 cells, but not in the ER- MDA-MB 436 cell line. This variant transcript showed expression predominantly in ER-positive breast tumors as assessed in our initial set of 53 breast cancers and further validated in 87 tumor/normal pairs from the TCGA breast cancer dataset, and expression was associated with better outcome in ER positive patients. CONCLUSIONS: ACOX2-i9 is specifically enriched in ER+ breast cancers where expression of the variant is associated with improved outcome. These data identify variant ACOX2 as a potential novel therapeutic biomarker in ER+ breast tumors.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Receptors, Estrogen/metabolism , Sequence Analysis, RNA/methods , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival , Codon, Initiator , Estradiol/analogs & derivatives , Estradiol/pharmacology , Female , Fulvestrant , Gene Expression Regulation, Neoplastic/drug effects , Genetic Variation , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Phenols/pharmacology , Prognosis , Pyrazoles/pharmacology , Survival Analysis , Tamoxifen/pharmacology
9.
PLoS One ; 10(5): e0126371, 2015.
Article in English | MEDLINE | ID: mdl-25955013

ABSTRACT

BACKGROUND: Copy number aberrations frequently occur during the development of many cancers. Such events affect dosage of involved genes and may cause further genomic instability and progression of cancer. In this survey, canine SNP microarrays were used to study 117 canine mammary tumours from 69 dogs. RESULTS: We found a high occurrence of copy number aberrations in canine mammary tumours, losses being more frequent than gains. Increased frequency of aberrations and loss of heterozygosity were positively correlated with increased malignancy in terms of histopathological diagnosis. One of the most highly recurrently amplified regions harbored the MYC gene. PTEN was located to a frequently lost region and also homozygously deleted in five tumours. Thus, deregulation of these genes due to copy number aberrations appears to be an important event in canine mammary tumour development. Other potential contributors to canine mammary tumour pathogenesis are COL9A3, INPP5A, CYP2E1 and RB1. The present study also shows that a more detailed analysis of chromosomal aberrations associated with histopathological parameters may aid in identifying specific genes associated with canine mammary tumour progression. CONCLUSIONS: The high frequency of copy number aberrations is a prominent feature of canine mammary tumours as seen in other canine and human cancers. Our findings share several features with corresponding studies in human breast tumours and strengthen the dog as a suitable model organism for this disease.


Subject(s)
Mammary Neoplasms, Animal/pathology , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-myc/genetics , Alleles , Animals , Chromosome Aberrations , Collagen Type IX/genetics , Comparative Genomic Hybridization , Cytochrome P-450 CYP2E1/genetics , DNA Copy Number Variations , Dogs , Female , Humans , Inositol Polyphosphate 5-Phosphatases , Loss of Heterozygosity , Mammary Neoplasms, Animal/metabolism , Phosphoric Monoester Hydrolases/genetics , Ploidies , Polymorphism, Single Nucleotide
10.
Cancer Res ; 75(12): 2457-67, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25862352

ABSTRACT

Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk, but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute nondense area adjusted for study, age, and BMI using mixed linear modeling. We found strong support for established associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1), and rs3817198 (LSP1) and adjusted absolute and percent dense areas (all P < 10(-5)). Of 41 recently discovered breast cancer susceptibility variants, associations were found between rs1432679 (EBF1), rs17817449 (MIR1972-2: FTO), rs12710696 (2p24.1), and rs3757318 (ESR1) and adjusted absolute and percent dense areas, respectively. There were associations between rs6001930 (MKL1) and both adjusted absolute dense and nondense areas, and between rs17356907 (NTN4) and adjusted absolute nondense area. Trends in all but two associations were consistent with those for breast cancer risk. Results suggested that 18% of breast cancer susceptibility variants were associated with at least one mammographic density measure. Genetic variants at multiple loci were associated with both breast cancer risk and the mammographic density measures. Further understanding of the underlying mechanisms at these loci could help identify etiologic pathways implicated in how mammographic density predicts breast cancer risk.


Subject(s)
Breast Neoplasms/pathology , Mammary Glands, Human/abnormalities , Aged , Breast Density , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Disease Susceptibility , Female , Genetic Predisposition to Disease , Genotype , Humans , Mammary Glands, Human/pathology , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
11.
J Natl Cancer Inst ; 107(5)2015 May.
Article in English | MEDLINE | ID: mdl-25855707

ABSTRACT

BACKGROUND: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. METHODS: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. RESULTS: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. CONCLUSIONS: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Gene Expression Profiling , Polymorphism, Single Nucleotide , Adult , Aged , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Europe/epidemiology , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genotype , Humans , Middle Aged , Odds Ratio , Predictive Value of Tests , Receptors, Estrogen/analysis , Risk Assessment , Risk Factors
12.
Breast Cancer Res ; 17: 18, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25849327

ABSTRACT

INTRODUCTION: Tumor lymphocyte infiltration is associated with clinical response to chemotherapy in estrogen receptor (ER) negative breast cancer. To identify variants in immunosuppressive pathway genes associated with prognosis after adjuvant chemotherapy for ER-negative patients, we studied stage I-III invasive breast cancer patients of European ancestry, including 9,334 ER-positive (3,151 treated with chemotherapy) and 2,334 ER-negative patients (1,499 treated with chemotherapy). METHODS: We pooled data from sixteen studies from the Breast Cancer Association Consortium (BCAC), and employed two independent studies for replications. Overall 3,610 single nucleotide polymorphisms (SNPs) in 133 genes were genotyped as part of the Collaborative Oncological Gene-environment Study, in which phenotype and clinical data were collected and harmonized. Multivariable Cox proportional hazard regression was used to assess genetic associations with overall survival (OS) and breast cancer-specific survival (BCSS). Heterogeneity according to chemotherapy or ER status was evaluated with the log-likelihood ratio test. RESULTS: Three independent SNPs in TGFBR2 and IL12B were associated with OS (P <10⁻³) solely in ER-negative patients after chemotherapy (267 events). Poorer OS associated with TGFBR2 rs1367610 (G > C) (per allele hazard ratio (HR) 1.54 (95% confidence interval (CI) 1.22 to 1.95), P = 3.08 × 10⁻4) was not found in ER-negative patients without chemotherapy or ER-positive patients with chemotherapy (P for interaction <10-3). Two SNPs in IL12B (r² = 0.20) showed different associations with ER-negative disease after chemotherapy: rs2546892 (G > A) with poorer OS (HR 1.50 (95% CI 1.21 to 1.86), P = 1.81 × 10⁻4), and rs2853694 (A > C) with improved OS (HR 0.73 (95% CI 0.61 to 0.87), P = 3.67 × 10⁻4). Similar associations were observed with BCSS. Association with TGFBR2 rs1367610 but not IL12B variants replicated using BCAC Asian samples and the independent Prospective Study of Outcomes in Sporadic versus Hereditary Breast Cancer Study and yielded a combined HR of 1.57 ((95% CI 1.28 to 1.94), P = 2.05 × 10⁻5) without study heterogeneity. CONCLUSIONS: TGFBR2 variants may have prognostic and predictive value in ER-negative breast cancer patients treated with adjuvant chemotherapy. Our findings provide further insights into the development of immunotherapeutic targets for ER-negative breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/immunology , Immunomodulation/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Estrogen/genetics , Receptors, Transforming Growth Factor beta/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Female , Genomics , Humans , Interleukin-12 Subunit p40/genetics , Kaplan-Meier Estimate , Middle Aged , Neoplasm Grading , Neoplasm Staging , Polymorphism, Single Nucleotide , Prognosis , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Estrogen/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Treatment Outcome , Tumor Burden
13.
Cancer Res ; 75(4): 698-708, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25649770

ABSTRACT

TP53 gene mutation is associated with poor prognosis in breast cancer, but additional biomarkers that can further refine the impact of the p53 pathway are needed to achieve clinical utility. In this study, we evaluated a role for the HDMX-S/FL ratio as one such biomarker, based on its association with other suppressor mutations that confer worse prognosis in sarcomas, another type of cancer that is surveilled by p53. We found that HDMX-S/FL ratio interacted with p53 mutational status to significantly improve prognostic capability in patients with breast cancer. This biomarker pair offered prognostic utility that was comparable with a microarray-based prognostic assay. Unexpectedly, the utility tracked independently of DNA-damaging treatments and instead with different tumor metastasis potential. Finally, we obtained evidence that this biomarker pair might identify patients who could benefit from anti-HDM2 strategies to impede metastatic progression. Taken together, our work offers a p53 pathway marker, which both refines our understanding of the impact of p53 activity on prognosis and harbors potential utility as a clinical tool.


Subject(s)
Breast Neoplasms/genetics , Lymphatic Metastasis/genetics , Nuclear Proteins/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , Biomarkers, Tumor/biosynthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle Proteins , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis/pathology , Mutation , Neoplasm Staging , Tumor Suppressor Protein p53/genetics
14.
Nat Commun ; 5: 4051, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24937182

ABSTRACT

Large population-based registry studies have shown that breast cancer prognosis is inherited. Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human immunology and inflammation as candidates for prognostic markers of breast cancer survival involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279 events) from 14 European studies in a prior large-scale genotyping experiment, which is part of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out replication using Asian COGS samples (n=522, 53 events) and the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n=315, 108 events). Rs4458204_A near CCL20 (2q36.3) is found to be associated with breast cancer-specific death at a genome-wide significant level (n=2,641, 440 events, combined allelic hazard ratio (HR)=1.81 (1.49-2.19); P for trend=1.90 × 10(-9)). Such survival-associated variants can represent ideal targets for tailored therapeutics, and may also enhance our current prognostic prediction capabilities.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Chromosomes, Human, Pair 2/genetics , Drug Therapy/methods , Genetic Markers/genetics , Female , Humans , Kaplan-Meier Estimate , Linkage Disequilibrium , Polymorphism, Single Nucleotide/genetics , Prognosis , Proportional Hazards Models , White People/genetics
15.
Int J Cancer ; 135(9): 2085-95, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24658971

ABSTRACT

Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Breast/metabolism , DNA Methylation , Epigenomics , Breast Neoplasms/immunology , Female , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction , Tumor Cells, Cultured
16.
Mol Oncol ; 8(2): 273-84, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24388359

ABSTRACT

Genome-wide association studies have identified numerous loci linked to breast cancer susceptibility, but the mechanism by which variations at these loci influence susceptibility is usually unknown. Some variants are only associated with particular clinical subtypes of breast cancer. Understanding how and why these variants influence subtype-specific cancer risk contributes to our understanding of cancer etiology. We conducted a genome-wide expression Quantitative Trait Locus (eQTL) study in a discovery set of 287 breast tumors and 97 normal mammary tissue samples and a replication set of 235 breast tumors. We found that the risk-associated allele of rs7716600 in the 5p12 estrogen receptor-positive (ER-positive) susceptibility locus was associated with elevated expression of the nearby gene MRPS30 exclusively in ER-positive tumors. We replicated this finding in 235 independent tumors. Further, we showed the rs7716600 risk genotype was associated with decreased MRPS30 promoter methylation exclusively in ER-positive breast tumors. In vitro studies in MCF-7 cells carrying the protective genotype showed that estrogen stimulation decreased MRPS30 promoter chromatin availability and mRNA levels. In contrast, in 600MPE cells carrying the risk genotype, estrogen increased MRPS30 expression and did not affect promoter availability. Our data suggest the 5p12 risk allele affects MRPS30 expression in estrogen-responsive tumor cells after tumor initiation by a mechanism affecting chromatin availability. These studies emphasize that the genetic architecture of breast cancer is context-specific, and integrated analysis of gene expression and chromatin remodeling in normal and tumor tissues will be required to explain the mechanisms of risk alleles.


Subject(s)
Alleles , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neoplasm Proteins/biosynthesis , Quantitative Trait Loci , Receptors, Estrogen/biosynthesis , Cell Line, Tumor , Female , Genome-Wide Association Study , Humans , Neoplasm Proteins/genetics , Receptors, Estrogen/genetics
17.
Genome Biol ; 14(11): R126, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24257477

ABSTRACT

BACKGROUND: The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. RESULTS: We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. CONCLUSIONS: Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.


Subject(s)
Breast Neoplasms/genetics , DNA Copy Number Variations , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , DNA Replication , Female , Gene Expression Profiling , Humans , MicroRNAs/metabolism
18.
Int J Radiat Oncol Biol Phys ; 86(4): 791-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23597419

ABSTRACT

PURPOSE: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). METHODS AND MATERIALS: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independent BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. RESULTS: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005). CONCLUSION: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance.


Subject(s)
Breast Neoplasms/radiotherapy , Genetic Variation/genetics , Polymorphism, Single Nucleotide/genetics , Radiation Injuries/genetics , Reactive Oxygen Species/metabolism , Thioredoxin Reductase 2/genetics , Breast Neoplasms/genetics , Dose Fractionation, Radiation , Female , Fibrosis , Humans , Pleura/radiation effects , RNA, Messenger/metabolism , Radiation Injuries/metabolism , Radiation Pneumonitis/genetics , Radiation Pneumonitis/metabolism , Skin/radiation effects , Survivors , Telangiectasis/genetics
19.
J Clin Oncol ; 30(35): 4308-16, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23109706

ABSTRACT

PURPOSE: We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. PATIENTS AND METHODS: From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. RESULTS: CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. CONCLUSION: Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Germ-Line Mutation , Neoplasms, Second Primary/enzymology , Neoplasms, Second Primary/genetics , Protein Serine-Threonine Kinases/genetics , Case-Control Studies , Checkpoint Kinase 2 , Female , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Middle Aged , Prognosis , Prospective Studies
20.
Cancer Epidemiol Biomarkers Prev ; 20(10): 2222-31, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21795498

ABSTRACT

BACKGROUND: The single-nucleotide polymorphism (SNP) 5p12-rs10941679 has been found to be associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We aimed to further explore this association overall, and by tumor histopathology, in the Breast Cancer Association Consortium. METHODS: Data were combined from 37 studies, including 40,972 invasive cases, 1,398 cases of ductal carcinoma in situ (DCIS), and 46,334 controls, all of white European ancestry, as well as 3,007 invasive cases and 2,337 controls of Asian ancestry. Associations overall and by tumor invasiveness and histopathology were assessed using logistic regression. RESULTS: For white Europeans, the per-allele OR associated with 5p12-rs10941679 was 1.11 (95% CI = 1.08-1.14, P = 7 × 10(-18)) for invasive breast cancer and 1.10 (95% CI = 1.01-1.21, P = 0.03) for DCIS. For Asian women, the estimated OR for invasive disease was similar (OR = 1.07, 95%CI = 0.99-1.15, P = 0.09). Further analyses suggested that the association in white Europeans was largely limited to progesterone receptor (PR)-positive disease (per-allele OR = 1.16, 95% CI = 1.12-1.20, P = 1 × 10(-18) vs. OR = 1.03, 95% CI = 0.99-1.07, P = 0.2 for PR-negative disease; P(heterogeneity) = 2 × 10(-7)); heterogeneity by ER status was not observed (P = 0.2) once PR status was accounted for. The association was also stronger for lower grade tumors [per-allele OR (95% CI) = 1.20 (1.14-1.25), 1.13 (1.09-1.16), and 1.04 (0.99-1.08) for grade 1, 2, and 3/4, respectively; P(trend) = 5 × 10(-7)]. CONCLUSION: 5p12 is a breast cancer susceptibility locus for PR-positive, lower grade breast cancer. IMPACT: Multicenter fine-mapping studies of this region are needed as a first step to identifying the causal variant or variants.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Chromosomes, Human, Pair 5/genetics , Genetic Predisposition to Disease , Receptors, Progesterone/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Case-Control Studies , Cohort Studies , Female , Follow-Up Studies , Humans , Neoplasm Grading , Polymorphism, Single Nucleotide , Prognosis , Receptors, Estrogen/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...