Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(11): 2954-2967, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817423

ABSTRACT

This work studies the impact of the silicon (Si) loading effect induced by deep reactive ion etching (DRIE) of silicon master molds on the UV-nanoimprint lithography (NIL) patterning of nanofeatures. The silicon molds were patterned with metasurface features with widths varying from 270 to 60 nm. This effect was studied by focus ion beam scanning electron microscopy (FIB-SEM) and atomic force microscopy (AFM). The Si loading etching effect is characterized by the variation of pattern feature depth concerning feature sizes because smaller features tend to etch more slowly than larger ones due to etchants being more difficult to pass through the smaller hole and byproducts being harder to diffuse out too. Thus, the NIL results obtained from the Si master mold contain different pattern geometries concerning pattern quality and residual photoresist layer thickness. The obtained results are pivotal for NIL for fabricating devices with various geometrical nanostructures as the research field moves towards commercial applications.

2.
Opt Express ; 30(19): 34117-34128, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242432

ABSTRACT

Metalenses are one of the most promising metasurface applications. However, all-dielectric reflective metalenses are rarely studied, especially regarding their off-axis focusing performance. After experimentally studying the material optical properties in this work, we propose reflective metalens based on titanium dioxide (TiO2) and silicon dioxide (SiO2), which operate at a visible wavelength of 0.633 µm. Unlike conventional reflective metalenses based on metallic mirrors, the proposed device was designed based on a modified parabolic phase profile and was integrated onto a dielectric distributed Bragg reflector periodic structure to achieve high reflectivity with five dielectric pairs. The focusing efficiency characteristics of the metalens were experimentally studied for beam angles of incidence between 0∘ and 30∘. The results reveal that the focusing efficiency for the modified metalens design remains higher than 54%, which is higher than 50%, making it promising for photonic miniaturization and integration.

3.
Opt Lett ; 47(23): 6229-6232, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219213

ABSTRACT

An atomically thick AlN layer is typically used as the strain compensation layer (SCL) for InGaN-based-red light-emitting diodes (LEDs). However, its impacts beyond strain control have not been reported, despite its drastically different electronic properties. In this Letter, we describe the fabrication and characterization of InGaN-based red LEDs with a wavelength of 628 nm. A 1-nm AlN layer was inserted between the InGaN quantum well (QW) and the GaN quantum barrier (QB) as the SCL. The output power of the fabricated red LED is greater than 1 mW at 100 mA current, and its peak on-wafer wall plug efficiency (WPE) is approximately 0.3%. Based on the fabricated device, we then used numerical simulation to systematically study the effect of the AlN SCL on the LED emission wavelength and operating voltage. The results show that the AlN SCL enhances the quantum confinement and modulates the polarization charges, modifying the device band bending and the subband energy level in the InGaN QW. Thus, the insertion of the SCL considerably affects the emission wavelength, and the effect on the emission wavelength varies with the SCL thickness and the Ga content introduced into the SCL. In addition, the AlN SCL in this work reduces the LED operating voltage by modulating the polarization electric field and energy band, facilitating carrier transport. This implies that heterojunction polarization and band engineering is an approach that can be extended to optimize the LED operating voltage. We believe our study better identifies the role of the AlN SCL in InGaN-based red LEDs, promoting their development and commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...