Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3944, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894685

ABSTRACT

This work presents a new method for processing single-crystal semiconductors designed by a computational method to lower the process temperature. This research study is based on a CALPHAD approach (ThermoCalc) to theoretically design processing parameters by utilizing theoretical phase diagrams. The targeted material composition consists of Bi-Se2-Te-Sb (BSTS). The semiconductor alloy contains three phases, hexagonal, rhombohedral-1, and rhombohedral-2 crystal structures, that are presented in the phase field of the theoretical pseudo-binary phase diagram. The semiconductor is also evaluated by applying Hume-Rothery rules along with the CALPHAD approach. Thermodynamic modelling suggests that single-crystals of BSTS can be grown at significantly lower temperatures and this is experimentally validated by low-temperature growth of single crystalline samples followed by exfoliation, compositional analysis, and diffraction.

2.
Nano Lett ; 22(17): 7166-7172, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35994426

ABSTRACT

We demonstrate advantages of samples made by mechanical stacking of exfoliated van der Waals materials for controlling the topological surface state of a three-dimensional topological insulator (TI) via interaction with an adjacent magnet layer. We assemble bilayers with pristine interfaces using exfoliated flakes of the TI BiSbTeSe2 and the magnet Cr2Ge2Te6, thereby avoiding problems caused by interdiffusion that can affect interfaces made by top-down deposition methods. The samples exhibit an anomalous Hall effect (AHE) with abrupt hysteretic switching. For the first time in samples composed of a TI and a separate ferromagnetic layer, we demonstrate that the amplitude of the AHE can be tuned via gate voltage with a strong peak near the Dirac point. This is the signature expected for the AHE due to Berry curvature associated with an exchange gap induced by interaction between the topological surface state and an out-of-plane-oriented magnet.

SELECTION OF CITATIONS
SEARCH DETAIL
...