Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 9(5): 054501, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36120414

ABSTRACT

Purpose: To evaluate the usefulness of computed tomography (CT) texture descriptors integrated with machine-learning (ML) models in the identification of clear cell renal cell carcinoma (ccRCC) and for the first time papillary renal cell carcinoma (pRCC) tumor nuclear grades [World Health Organization (WHO)/International Society of Urologic Pathologists (ISUP) 1, 2, 3, and 4]. Approach: A total of 143 ccRCC and 21 pRCC patients were analyzed in this study. Texture features were extracted from late arterial phase CT images. A complete separation of training/validation and testing subsets from the beginning to the end of the pipeline was adopted. Feature dimension was reduced by collinearity analysis and Gini impurity-based feature selection. The synthetic minority over-sampling technique was employed for imbalanced datasets. The ML classifiers were logistic regression, SVM, RF, multi-layer perceptron, and K -NN. The differentiation between low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and between all grades was assessed for ccRCC and pRCC datasets. The classification performance was assessed and compared by certain metrics. Results: Textures-based classifiers were able to efficiently identify ccRCC and pRCC grades. An accuracy and area under the characteristic operating curve (AUC) up to 91%/0.9, 91%/0.9, 90%/0.9, and 88%/1 were reached when discriminating ccRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. An accuracy and AUC up to 96%/1, 81%/0.8, 86%/0.9, and 88%/0.9 were found when differentiating pRCC low grades/ high grades, grade 1/grade 2, grade 3/grade 4, and all grades, respectively. Conclusion: CT texture-based ML models can be used to assist radiologist in predicting the WHO/ISUP grade of ccRCC and pRCC pre-operatively.

2.
Med Image Anal ; 69: 101960, 2021 04.
Article in English | MEDLINE | ID: mdl-33517241

ABSTRACT

Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.


Subject(s)
Artificial Intelligence , Renal Insufficiency, Chronic , Humans , Image Processing, Computer-Assisted , Machine Learning , Magnetic Resonance Imaging , Renal Insufficiency, Chronic/diagnostic imaging
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6624-6627, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947360

ABSTRACT

Decellularization is a technique that permits the removal of cells from intact organs while preserving the extracellular matrix (ECM). It has many applications in various fields such as regenerative medicine and tissue engineering. This study aims to differentiate between fresh and decellularized kidneys using quantitative ultrasound (QUS) parameters. Spectral parameters were extracted from the linear fit of the power spectrum of raw radio frequency data and parametric maps were generated corresponding to the regions of interest, from which four textural parameters were estimated. The results of this study indicated that decellularization affects both spectral and textural parameters. The Mid Band Fit mean and contrast were found to be the best spectral and textural predictors of kidney decellularization, respectively.


Subject(s)
Tissue Engineering , Animals , Cell Differentiation , Extracellular Matrix , Kidney , Mice , Tissue Scaffolds , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL