Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 10: e13990, 2022.
Article in English | MEDLINE | ID: mdl-36213511

ABSTRACT

Background: Obesity and diabetes are becoming increasingly prevalent around the world. Inflammation, oxidative stress, insulin resistance, and glucose intolerance are linked to both obesity and type 2 diabetes, and these disorders are becoming major public health issues globally. Methods: This study evaluated the effects of obesity, diabetes, and hypoxia on the levels of pro- and anti-inflammatory cytokines in rats. We divided 120 Wistar rats in two groups, male and female, each including six subgroups: control (CTRL), obese (high-fat diet (HFD)), diabetic (streptozotocin (STZ)-treated), hypoxic (HYX), obese + diabetic (HFD/STZ), and obese + diabetic + hypoxic (HFD/STZ/HYX). We examined the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL10, and leptin in pancreatic tissues and serum. Results: No significant difference was observed in serum levels of cholesterol, triglycerides, and low-density lipoprotein (LDL) between HYX and CTRL in either sex. However, they were significantly increased, whereas high-density lipoprotein (HDL) was significantly decreased in HFD, STZ, HFD/STZ, and HFD/STZ/HPX compared with CTRL in both sexes. The expression of Tnf-α, Il6, and Lep was significantly upregulated in all subgroups compared with CTRL in both sexes. STZ and HYX showed no significant differences in the expression of these genes between sexes, whereas Tnf-α and Il6 were upregulated in male HFD, HFD/STZ, and HFD/STZ/HYX compared with females. Protein levels showed similar patterns. Combination subgroups, either in the absence or presence of hypoxia, frequently exhibited severe necrosis of endocrine components in pancreatic lobules. The combination of obesity, diabetes, and hypoxia was associated with inflammation, which was verified at the histopathological level.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Male , Female , Animals , Diabetes Mellitus, Type 2/genetics , Cytokines , Tumor Necrosis Factor-alpha/genetics , Interleukin-6 , Rats, Wistar , Diabetes Mellitus, Experimental/genetics , Obesity/genetics , Inflammation/genetics
2.
Front Bioeng Biotechnol ; 10: 797440, 2022.
Article in English | MEDLINE | ID: mdl-35814023

ABSTRACT

Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.

3.
Saudi Pharm J ; 29(7): 656-669, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34400859

ABSTRACT

Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new "personalized medicines" and "pharmacogenetics" for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies-for ER+ ductal breast cancer-on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.

4.
Curr Pharm Biotechnol ; 22(12): 1612-1627, 2021.
Article in English | MEDLINE | ID: mdl-33535947

ABSTRACT

BACKGROUND: Amygdalin has anticancer benefits because of its active component, hydrocyanic acid. However, the underlying molecular mechanism is unclear. OBJECTIVE: This study aimed to investigate the molecular mechanism by which amygdalin exerts antiproliferative effects in the human Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line. METHODS: MCF-7 cells were exposed to amygdalin at a particular IC50 value for 24 and 48 hours and compared to non-treated cells. An Affymetrix whole-transcript expression array was used to analyze the expression of 32 genes related to DNA replication. RESULTS: Among the 32 genes, amygdalin downregulated the expression of 16 genes and 19 genes by >1.5-fold at 24 and 48 hours, respectively. At 24 hours, the downregulated genes from the DNA polymerase α-primase complex were POLA1, POLA2, PRIM1, and PRIM2; DNA polymerase δ complex: POLD3; DNA polymerase ε complex: POLE4, Minichromosome Maintenance protein (MCM) complex (helicase): MCM2, MCM3, MCM4, MCM6, and MCM7; clamp and clamp loader: PCNA; nuclease: FEN1; and DNA ligase: LIG1. At 48 hours, the downregulated genes from the DNA polymerase α-primase complex were POLA1, POLA2, and PRIM1; DNA polymerase δ complex: POLD3; DNA polymerase ε complex: POLE and POLE2; MCM complex (helicase): MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7; clamp and clamp loader: PCNA, RFC2, and RFC3; RNase H: RNASEH2A; nucleases: DNA2 and FEN1; and DNA ligase: LIG1. CONCLUSION: Amygdalin treatment caused downregulation of several genes that play critical roles in DNA replication in the MCF-7 cell line. Thus, it might be useful as an anticancer agent.


Subject(s)
Amygdalin , Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Primase , DNA Replication , Female , Humans , Minichromosome Maintenance Complex Component 6/genetics , Minichromosome Maintenance Complex Component 6/metabolism
5.
Saudi Pharm J ; 28(11): 1333-1352, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32905015

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.

6.
Pak J Biol Sci ; 23(8): 1025-1036, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32700853

ABSTRACT

BACKGROUND AND OBJECTIVE: Rosmarinic acid is considered as one of the most important secondary metabolites in medicinal plants especially of family Lamiaceae. Rosmarinic acid can prevent both the tumor initiation and promotion stages of carcinogenesis. The aim of current study was to evaluate the antiproliferative effects of Hyssopus officinalis and Thymus vulgaris callus crude extracts contained rosmarinic acid on breast cancer cells with correlation to phenylpropanoid biosynthetic pathway genes expression. MATERIALS AND METHODS: Calli of both plants were maintained on Murashige and Skoog medium supplemented with kinetin and 2,4-D. Rosmarinic acid was determined spectrophotometrically in both seed-germinated plants (control) and callus tissues. Transcriptional profiling of rosmarinic acid pathway genes was performed with RT-PCR system. The human breast cancer cell line MCF-7 was treated with different levels of crude extracts at different time intervals in order to show their effects on the cell proliferation using a cell viability colorimetric assay (MTT). RESULTS: The results showed a significant increase of rosmarinic acid content up to 6.5% in callus compared to control. The transcriptional profile of the selected rosmarinic acid genes in callus tissues indicated significant effects on the rosmarinic acid content in both genotypes. T. vulgaris (90 µg mL-1) and H. officinalis (150 µg mL-1) callus extracts had exhibited highest reduction in the cell MCF-7 viability after 48 h of exposure. CONCLUSION: It was concluded that rosmarinic acid production increased in callus tissue, showed the higher gene expression levels and remarkably inhibited growth of human breast cancer cell line.


Subject(s)
Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Depsides/pharmacology , Neoplasm Proteins/biosynthesis , Breast Neoplasms/metabolism , Female , Humans , MCF-7 Cells , Protein Biosynthesis/genetics , Rosmarinic Acid
7.
PeerJ ; 8: e9232, 2020.
Article in English | MEDLINE | ID: mdl-32509470

ABSTRACT

BACKGROUND: Little is known regarding the toxic and therapeutic doses of amygdalin. Treatment regimens and schedules can vary between humans and animal models, and there have been reports of cyanide toxicity due to amygdalin use. OBJECTIVE: The aim of this study was to evaluate the effect of different doses of amygdalin on antioxidant gene expression and suppression of oxidative damage in mice. METHODS: Forty adult male mice were divided randomly into four groups (n = 10) as follows and treated orally for two weeks: a control group treated with saline solution, a group treated with amygdalin at 200 mg/kg body weight, a group treated with amygdalin at 100 mg/kg body weight, and a group treated with amygdalin at 50 mg/kg body weight. Liver and testis samples were collected for gene expression, biochemical and histopathological analyses. RESULTS: The mice treated with medium-dose amygdalin (100 mg/kg) showed upregulated mRNA expression of glutathione peroxidase (P < 0.01) and superoxide dismutase (P < 0.05) and significantly decreased lipid peroxidation (P < 0.05) in hepatic and testicular tissues compared to those in the untreated groups (controls), with mild histopathological effects. The mice treated with high-dose of amygdalin (200 mg/kg) showed downregulated mRNA expression of glutathione peroxidase and superoxide dismutase (P < 0.01) and significantly increased lipid peroxidation (P < 0.05) in both hepatic and testicular tissues compared to those in the untreated groups (controls), with an apparent effect at the histopathological level. No effects were observed in the mice treated with low-dose amygdalin (50 mg/kg) at the gene, protein and histopathological level. CONCLUSION: Low-and medium-dose amygdalin did not induce toxicity in the hepatic and testicular tissues of male mice, unlike high-dose amygdalin, which had a negative effect on oxidative balance in mice. Therefore, amygdalin at a moderate dose may improve oxidative balance in mice.

8.
Curr Pharm Biotechnol ; 21(14): 1528-1538, 2020.
Article in English | MEDLINE | ID: mdl-32188380

ABSTRACT

BACKGROUND: In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. OBJECTIVE: We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. METHODS: MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. RESULTS: The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. DISCUSSION: At a low concentration of 10 µg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. CONCLUSION: Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Coleus/chemistry , Depsides/pharmacology , Plant Extracts/pharmacology , Rosmarinus/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Survival , Cinnamates/isolation & purification , Depsides/isolation & purification , Dose-Response Relationship, Drug , Humans , MCF-7 Cells , Plant Extracts/isolation & purification , Plant Shoots/chemistry , Seedlings/chemistry , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...