Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Evol ; 84(2-3): 144-148, 2017 03.
Article in English | MEDLINE | ID: mdl-28116472

ABSTRACT

Microsatellites form hotspot regions for recombination. In this research, we investigated whether genic microsatellites can be responsible for generating new genes by enhancing crossover between gene containing microsatellites and other genomic regions. We tested our hypothesis on 33,531 UniGene entries containing microsatellites. Each sequence was divided into microsatellites upstream and downstream fragments, and each pair of sequences was compared to study the microsatellites effect. The candidate pairs of genes are supposed to share a high similar fragment in one side of the microsatellites, while the other fragments should be completely different. This in silico approach detected 448 valid pairs of sequences in which both of them showed semi-resemblance nature. The synteny analysis for the detected sequences against 55 plant genomes indicated low representation of them across plant kingdom. Our results will add a body of knowledge toward understanding the role of microsatellites in gene evolution.


Subject(s)
Microsatellite Repeats/genetics , Streptophyta/genetics , Evolution, Molecular , Expressed Sequence Tags , Genes, Plant/genetics , Genome, Plant/genetics , Genomics/methods , Synteny/genetics
2.
BMC Genomics ; 15: 67, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24460856

ABSTRACT

BACKGROUND: Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line. RESULTS: The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line. CONCLUSIONS: Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.


Subject(s)
Biological Evolution , Genome, Mitochondrial , Mitochondria/genetics , Triticum/genetics , Amino Acid Sequence , High-Throughput Nucleotide Sequencing , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Polymorphism, Single Nucleotide , Sequence Alignment , Sequence Analysis, DNA , Triticum/metabolism
3.
Funct Integr Genomics ; 13(1): 19-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23479086

ABSTRACT

The species cytoplasm specific (scs) genes affect nuclear-cytoplasmic interactions in interspecific hybrids. A radiation hybrid (RH) mapping population of 188 individuals was employed to refine the location of the scs (ae) locus on Triticum aestivum chromosome 1D. "Wheat Zapper," a comparative genomics tool, was used to predict synteny between wheat chromosome 1D, Oryza sativa, Brachypodium distachyon, and Sorghum bicolor. A total of 57 markers were developed based on synteny or literature and genotyped to produce a RH map spanning 205.2 cR. A test-cross methodology was devised for phenotyping of RH progenies, and through forward genetic, the scs (ae) locus was pinpointed to a 1.1 Mb-segment containing eight genes. Further, the high resolution provided by RH mapping, combined with chromosome-wise synteny analysis, located the ancestral point of fusion between the telomeric and centromeric repeats of two paleochromosomes that originated chromosome 1D. Also, it indicated that the centromere of this chromosome is likely the result of a neocentromerization event, rather than the conservation of an ancestral centromere as previously believed. Interestingly, location of scs locus in the vicinity of paleofusion is not associated with the expected disruption of synteny, but rather with a good degree of conservation across grass species. Indeed, these observations advocate the evolutionary importance of this locus as suggested by "Maan's scs hypothesis."


Subject(s)
Chromosomes, Plant/genetics , Radiation Hybrid Mapping , Synteny , Triticum/genetics , Centromere/genetics , Genes, Plant , Genetic Loci , Genetic Markers , Telomere/genetics
4.
Funct Integr Genomics ; 13(1): 11-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23474942

ABSTRACT

In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The "Wheat Zapper" application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the "Wheat Zapper" prediction was confirmed against the genome of maize, with good correlation (r > 0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of "Wheat Zapper" was calculated at 0.65 considering the "Genome Zipper" application as the "gold" standard. The differences between these two tools are amply discussed, making the point that "Wheat Zapper" is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/ .


Subject(s)
Genome, Plant , Poaceae/genetics , Software , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...