Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(1): 903-916, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222621

ABSTRACT

This study addressed the simplest and most efficient HPLC (high-performance liquid chromatography) method for the estimation of 5-fluorouracil (5-FU) from rat blood plasma by implementing the Hansen solubility parameters (HSP), computation prediction program, and QbD (quality by design) tool. The mobile phase selection was based on the HSP predictions and experimental data. The Taguchi model identified seven variables (preoptimization) to screen two factors (mobile phase ratio as A and column temperature as B) at three levels as input parameters in "CCD (central composite design)" optimization (retention time as Y1 and peak area as Y2). The stability study (freeze-thaw cycle and short- and long-term stability) was conducted in the rat plasma. Results showed that HSPiP-based HSP values and computational model-based predictions were well simulated with the experimental solubility data. Acetonitrile (ACN) was relatively suitable over methanol as evidenced by the experimental solubility value, HSP predicted parameters (δh of 5-FU - δh of ACN = 8.3-8.3 = 0 as high interactive solvent whereas δh of 5-FU - δh of methanol = 8.3-21.7 = -13.4), and instrumental conditions. CCD-based dependent variables (Y1 and Y2) exhibited the best fit of the model as evidenced by a high value of combined desirability (0.978). The most robust method was adopted at A = 96:4 and B = 40 °C to get earlier Y1 and high Y2 as evidenced by high desirability (D) = 0.978 (quadratic model with p < 0.0023). The estimated values of LLOD and LLOQ were found to be 0.11 and 0.36 µg/mL, respectively with an accuracy range of 94.4-98.7%. Thus, the adopted method was the most robust, reliable, and reproducible methodology for pharmacokinetic parameters after the transdermal application of formulations in the rat.

2.
J Enzyme Inhib Med Chem ; 39(1): 2288548, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38073431

ABSTRACT

Isatin, known as 1H-indole-2,3-dione, was originally recognised as a synthetic molecule until its discovery in the fruits of the cannonball tree, Couroupita guianensis. It is naturally occurring in plants of the genus Isatis and serves as a metabolic derivative of adrenaline in humans. Isatin possesses significant pharmacological importance, and its synthetic versatility has prompted extensive interest in its derivative compounds due to their diverse biological and pharmacological properties. These derivatives represent a valuable class of heterocyclic compounds with potential applications as precursors for synthesizing numerous valuable drugs. In the pursuit of advancing our research on isatin hybrids, we investigate the utilisation of readily available hydrazonoindolin-2-one and isatin as starting materials for the synthesis of a wide range of analogues. Characterisation of the synthesized compounds was carried out through various analytical techniques. Furthermore, the obtained compounds were subjected to extensive testing to evaluate their anticancer and antimicrobial activities. Specifically, their efficacy against key proteins, namely Staphylococcus aureus protein (PDB ID: 1JIJ), Escherichia coli protein (PDB ID: 1T9U), Pseudomonas aeruginosa protein (PDB ID: 2UV0), and Acinetobacter baumannii protein (PDB ID: 4HKG), was examined through molecular docking calculations. Several molecules, such as 3, 4, 6, 16, and 19, displayed remarkable activity against the renal cancer cell line UO-31. Additionally, the results of antimicrobial activity testing revealed that compound 16 exhibited significant cytotoxicity against Candida albicans and Cryptococcus neoformans. Subsequently, ADME/T calculations were performed to gain insights into the potential effects and reactions of these molecules within human metabolism. This comprehensive study provides valuable insights into the potential pharmacological applications of isatin derivatives and underscores their significance in drug development.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Isatin , Humans , Molecular Docking Simulation , Isatin/pharmacology , Antineoplastic Agents/pharmacology , Anti-Infective Agents/pharmacology , Cell Line , Molecular Structure , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology
3.
ACS Omega ; 8(12): 11100-11117, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008160

ABSTRACT

We attempted to develop green nanoemulsions (ENE1-ENE5) using capryol-C90 (C90), lecithin, Tween 80, and N-methyl-2-pyrrolidone (NMP). HSPiP software and experimentally obtained data were used to explore excipients. ENE1-ENE5 nanoemulsions were prepared and evaluated for in vitro characterization parameters. An HSPiP based QSAR (quantitative structure-activity relationship) module established a predictive correlation between the Hansen solubility parameter (HSP) and thermodynamic parameters. A thermodynamic stability study was conducted under stress conditions of temperature (from -21 to 45 °C) and centrifugation. ENE1-ENE5 were investigated for the influence of size, viscosity, composition, and exposure time on emulsification (5-15 min) on %RE (percent removal efficiency). Eventually, the treated water was evaluated for the absence of the drug using electron microscopy and optical emission spectroscopy. HSPiP program predicted excipients and established the relationship between enoxacin (ENO) and excipients in the QSAR module. The stable green nanoemulsions ENE-ENE5 possessed the globular size range of 61-189 nm, polydispersity index (PDI) of 0.1-0.53, viscosity of 87-237 cP, and ζ potential from -22.1 to -30.8 mV. The values of %RE depended upon the composition, globular size, viscosity, and exposure time. ENE5 showed %RE value as 99.5 ± 9.2% at 15 min of exposure time, which may be due to the available maximized adsorption surface. SEM-EDX (scanning electron microscopy-X-ray dispersive energy mode) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) negated the presence of ENO in the treated water. These variables were critical factors for efficient removal of ENO during water treatment process design. Thus, the optimized nanoemulsion can be a promising approach to treat water contaminated with ENO (a potential pharmaceutical antibiotics).

4.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677860

ABSTRACT

Computer-aided drug design is a powerful and promising tool for drug design and development, with a reduced cost and time. In the current study, we rationally selected a library of 34 fused imidazo[1,2-a]quinoxaline derivatives and performed virtual screening, molecular docking, and molecular mechanics for a lead identification against tubulin as an anticancer molecule. The computational analysis and pharmacophoric features were represented as 1A2; this was a potential lead against tubulin, with a maximized affinity and binding score at the colchicine-binding site of tubulin. The efficiency of this lead molecule was further identified using an in vitro assay on a tubulin enzyme and the anticancer potential was established using an MTT assay. Compound 1A2 (IC50 = 4.33-6.11 µM against MCF-7, MDA-MB-231, HCT-116, and A549 cell lines) displayed encouraging results similar to the standard drug colchicine in these in vitro studies, which further confirmed the effectiveness of CADD in new drug developments. Thus, we successfully applied the utility of in silico techniques to identify the best plausible leads from the fused azaheterocycles.


Subject(s)
Antineoplastic Agents , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Molecular Docking Simulation , Cell Proliferation , Quinoxalines/pharmacology , Colchicine/pharmacology , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Drug Screening Assays, Antitumor
5.
ACS Omega ; 7(51): 48100-48112, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591121

ABSTRACT

Contaminated wastewater released from hospital, domestic, and industrial sources is a major challenge to aquatic animals and human health. In this study, we addressed removal of erythromycin (ERN) from contaminated water employing water/ethanol/Transcutol/Labrafil M 1944 CS (LabM) green nanoemulsions as a nanocarrier system. ERN is a major antibiotic contaminant harming aquatic and human lives. Green nanoemulsions were prepared and evaluated for size, size distribution (measuring polydispersity index), stability, zeta potential, refractive index, and viscosity. Transmission electron microscopy (TEM) was used to visualize morphological behavior. The treated-water was analyzed for ERN by the spectroscopy, scanning electron microscopy-energy-dispersive X-ray analysis mode (SEM-EDX), and inductively coupled plasma-optical emission spectroscopy (ICP-OES) techniques. We studied factors (composition, size, viscosity, and time of exposure) affecting removal efficiency (%RE). The obtained green nanoemulsions (ENE1-ENE5) were stable and clear (<180 nm). ENE5 had the smallest size (58 nm), a low polydispersity index value (0.19), optimal viscosity (∼121.7 cP), and a high negative zeta potential value (-25.4 mV). A high %RE value (98.8%) was achieved with a reduced size, a high water amount, a low Capryol 90 content, and optimal viscosity as evidenced by the obtained results. Moreover, contact time had insignificant effect on %RE. UV-vis spectroscopy, SEM-EDX, and ICP-OES confirmed the absence of ERN from the treated water. Conclusively, ERN can easily be removed from polluted water employing green nanoemulsions prepared from the optimized excipients, and evaluated characteristics.

6.
Saudi J Biol Sci ; 28(2): 1494-1501, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613077

ABSTRACT

Bacillus subtilis microbe is commonly found in soil and produces proteases on nitrogen and carbon-containing sources and increases the fertility rate by degrading nitrogenous organic materials. The present study was aimed to develop hyper producing mutant strain of B. subtilis for the production of proteases, to improve the process variables by the response surface methodology (RSM) under central composite design (CCD) and the production of protease by the particular mutant strain in a liquid state fermentation media. The mutation of the strain was carried out using ethidium bromide. Pure B. subtilis strain was collected and screened for hyper-production of protease. The production of protease by mutant B. subtilis strain was optimized by varying temperature, inoculum size, pH and incubation time under liquid state fermentation. The CCD model were found to be reliable with r2 of 0.999. The maximum enzyme activity of B. subtilis IBL-04 mutant with 3 mL/100 mL inoculum size, 72 h fermentation time, pH 8, and 45 °C temperature was developed with enzyme activity 631.09 U/mL, indicates 1-7-fold increase in enzyme activity than the parent strain having 82.32 U/mL activity. These characteristics render its potential use in industries for pharmaceutical and dairy formulation.

7.
Molecules ; 25(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371296

ABSTRACT

Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component.


Subject(s)
Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Rhododendron/chemistry , Animals , Antioxidants/metabolism , Biomarkers/blood , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Inflammation/blood , Inflammation/metabolism , Male , Rats , Rats, Wistar
8.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158114

ABSTRACT

The present investigation aimed to evaluate the protective effect of Zingerone (ZIN) against lipopolysaccharide-induced oxidative stress, DNA damage, and cytokine storm in rats. For survival study the rats were divided into four groups (n = 10). The control group was treated with normal saline; Group II received an intraperitoneal (i.p) injection (10 mg/kg) of LPS as disease control. Rats in Group III were treated with ZIN 150 mg/kg (p.o) 2 h before LPS challenge and rats in Group IV were given ZIN only. Survival of the rats was monitored up to 96 h post LPS treatment. In another set, the animals were divided into four groups of six rats. Animals in Group I served as normal control and were treated with normal saline. Animals in Group II were treated with lipopolysaccharide (LPS) and served as disease control. Group III animals were treated with ZIN 2 h before LPS challenge. Group IV served as positive control and were treated with ZIN (150 mg/kg orally). The blood samples were collected and used for the analysis of biochemical parameters like alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), blood urea nitrogen (BUN), Cr, Urea, lactate dehydrogenase (LDH), albumin, bilirubin (BIL), and total protein. Oxidative stress markers malondialdehyde (MDA), glutathione peroxidase (GSH), myeloperoxidase (MPO), and (DNA damage marker) 8-OHdG levels were measured in different organs. Level of nitric oxide (NO) and inflammatory markers like TNF-α, IL-1ß, IL-1α, IL-2, IL-6, and IL-10 were also quantified in plasma. Procalcitonin (PCT), a sepsis biomarker, was also measured. ZIN treatment had shown significant (p < 0.5) restoration of plasma enzymes, antioxidant markers and attenuated plasma proinflammatory cytokines and sepsis biomarker (PCT), thereby preventing the multi-organ and tissue damage in LPS-induced rats also confirmed by histopathological studies of different organs. The protective effect of ZIN may be due to its potent antioxidant potential. Thus ZIN can prevent LPS-induced oxidative stress as well as inflammatory and multi-organ damage in rats when administered to the LPS treated animals.


Subject(s)
Cytokines/blood , Guaiacol/analogs & derivatives , Lipopolysaccharides/toxicity , Multiple Organ Failure , Nitric Oxide/blood , Oxidative Stress/drug effects , Sepsis , Animals , Biomarkers/blood , Guaiacol/pharmacology , Inflammation/blood , Inflammation/chemically induced , Inflammation/prevention & control , Male , Multiple Organ Failure/blood , Multiple Organ Failure/chemically induced , Multiple Organ Failure/prevention & control , Rats , Rats, Wistar , Sepsis/blood , Sepsis/chemically induced , Sepsis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...