Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BJR Open ; 1(1): 20180001, 2019.
Article in English | MEDLINE | ID: mdl-33178905

ABSTRACT

OBJECTIVE: This study tested the hypothesis that shows advanced image analysis can differentiate fit and unfit patients for radical radiotherapy from standard radiotherapy planning imaging, when compared to formal lung function tests, FEV1 (forced expiratory volume in 1 s) and TLCO (transfer factor of carbon monoxide). METHODS: An apical region of interest (ROI) of lung parenchyma was extracted from a standard radiotherapy planning CT scan. Software using a grey level co-occurrence matrix (GLCM) assigned an entropy score to each voxel, based on its similarity to the voxels around it. RESULTS: Density and entropy scores were compared between a cohort of 29 fit patients (defined as FEV1 and TLCO above 50 % predicted value) and 32 unfit patients (FEV1 or TLCO below 50% predicted). Mean and median density and median entropy were significantly different between fit and unfit patients (p = 0.005, 0.0008 and 0.0418 respectively; two-sided Mann-Whitney test). CONCLUSION: Density and entropy assessment can differentiate between fit and unfit patients for radical radiotherapy, using standard CT imaging. ADVANCES IN KNOWLEDGE: This study shows that a novel assessment can generate further data from standard CT imaging. These data could be combined with existing studies to form a multiorgan patient fitness assessment from a single CT scan.

2.
Br J Radiol ; 91(1081): 20170267, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28869399

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide. Treatment pathways include regular cross-sectional imaging, generating large data sets which present intriguing possibilities for exploitation beyond standard visual interpretation. This additional data mining has been termed "radiomics" and includes semantic and agnostic approaches. Textural analysis (TA) is an example of the latter, and uses a range of mathematically derived features to describe an image or region of an image. Often TA is used to describe a suspected or known tumour. TA is an attractive tool as large existing image sets can be submitted to diverse techniques for data processing, presentation, interpretation and hypothesis testing with annotated clinical outcomes. There is a growing anthology of published data using different TA techniques to differentiate between benign and malignant lung nodules, differentiate tissue subtypes of lung cancer, prognosticate and predict outcome and treatment response, as well as predict treatment side effects and potentially aid radiotherapy planning. The aim of this systematic review is to summarize the current published data and understand the potential future role of TA in managing lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Humans , Positron Emission Tomography Computed Tomography/methods , Tomography, X-Ray Computed/methods
3.
Phys Med Biol ; 62(13): 5403-5416, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28604371

ABSTRACT

Several studies have recently reported on the value of CT texture analysis in predicting survival, although the topic remains controversial, with further validation needed in order to consolidate the evidence base. The aim of this study was to investigate the effect of varying the input parameters in the Kaplan-Meier analysis, to determine whether the resulting P-value can be considered to be a robust indicator of the parameter's prognostic potential. A retrospective analysis of the CT-based normalised entropy of 51 patients with lung cancer was performed and overall survival data for these patients were collected. A normalised entropy cut-off was chosen to split the patient cohort into two groups and log-rank testing was performed to assess the survival difference of the two groups. This was repeated for varying normalised entropy cut-offs and varying follow-up periods. Our findings were also compared with previously published results to assess robustness of this parameter in a multi-centre patient cohort. The P-value was found to be highly sensitive to the choice of cut-off value, with small changes in cut-off producing substantial changes in P. The P-value was also sensitive to follow-up period, with particularly noisy results at short follow-up periods. Using matched conditions to previously published results, a P-value of 0.162 was obtained. Survival analysis results can be highly sensitive to the choice in texture cut-off value in dichotomising patients, which should be taken into account when performing such studies to avoid reporting false positive results. Short follow-up periods also produce unstable results and should therefore be avoided to ensure the results produced are reproducible. Previously published findings that indicated the prognostic value of normalised entropy were not replicated here, but further studies with larger patient numbers would be required to determine the cause of the different outcomes.


Subject(s)
Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Female , Humans , Image Processing, Computer-Assisted , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...