Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 3): 160063, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36368390

ABSTRACT

We have quantified inputs and fate of nutrients in European fresh and marine waters from 1990 to 2018. We have used the conceptual model GREEN to assess the impact of efforts on curbing nutrient pollution in European regions. In the first two decades, i.e. in the 1990s and through the start of the new millennium, nutrient inputs to waters decreased significantly. Nutrient pollution in freshwaters and to the sea largely reduced in all regions, although at different pace. However, around 2008-2010 trends in nutrient inputs changed, marking an increase in the last decade, particularly from agricultural diffuse sources. In some regions, current nutrient inputs to waters are close to those estimated at the beginning of the 1990s. At the end of the study period, nutrient concentrations in freshwaters remain above thresholds congruent with good ecological status of water bodies in most downstream reaches. European policies tackling point sources are close to reach their maximum impact. In the face of this approaching ceiling, sustainable nutrient management on agricultural land becomes pivotal for effective nutrient control in river basins. The regional approach highlighted differences across Europe that may provide tailored opportunities to plan effective strategies for achieving environmental targets.


Subject(s)
Policy , Europe
2.
Ecol Indic ; 126: 107684, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34220341

ABSTRACT

Understanding how anthropogenic pressures affect river ecological status is pivotal to designing effective management strategies. Knowledge on river aquatic habitats status in Europe has increased tremendously since the introduction of the European Union Water Framework Directive, yet heterogeneities in mandatory monitoring and reporting still limit identification of patterns at continental scale. Concurrently, several model and data-based indicators of anthropogenic pressures to freshwater that cover the continent consistently have been developed. The objective of this work was to create European maps of the probability of occurrence of river conditions, namely failure to achieve good ecological status, or to be affected by specific pervasive impacts. To this end, we applied logistic regression methods to model the river conditions as functions of continental-scale water pressure indicators. The prediction capacity of the models varied with river condition: the probability to fail achieving good ecological status, and occurrence of nutrient and organic pollution were rather well predicted; conversely, chemical (other than nutrient and organic) pollution and alteration of habitats due to hydrological or morphological changes were poorly predicted. The most important indicators explaining river conditions were the shares of agricultural and artificial land, mean annual net abstractions, share of pollution loads from point sources, and the share of upstream river length uninterrupted by barriers. The probability of failing to achieve good ecological status was estimated to be high (>60%) for 36% of the considered river network of about 1.6 M km. Occurrence of impact of nutrient pollution was estimated high (>60%) in 26% of river length and that of organic pollution 20%. The maps are built upon information reported at country level pursuant EU legal obligations, as well as indicators generated from European scale models and data: both sources are affected by epistemic uncertainty. In particular, reported information depend on data collection scoping and schemes, as well as national knowledge and interpretation of river system pressures. In turn, water pressure indicators are affected by heterogeneous biases due to incomplete or incorrect inputs and uncertainty of models adopted. Lack of effective reach- and site-scale indicators may hamper detection of locally relevant impacts, for example in explaining alteration of habitats due to morphological changes. The probability maps provide a continental snapshot of current river conditions, and offer an alternative source of information on river aquatic habitats, which may help filling in knowledge gaps. Foremost, the analysis demonstrates the need for developing more effective continental-scale indicators for hydromorphological alterations and chemical pollution.

3.
Sci Data ; 7(1): 33, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974365

ABSTRACT

Estimation of domestic waste emissions to waters is needed for pollution assessment and modelling. We assessed quantity and location of domestic waste emissions to European waters for the 2010s. Specifically, we considered discharges of domestic waste Population Equivalent (PE, the amount of waste that equals to 60 g per day of Biochemical Oxygen Demand), and mean annual loads (t/y) of total nitrogen, total phosphorus, and 5-days Biochemical Oxygen Demand. The spatial resolution and extent of the analysis corresponded to the CCM2 River and Catchment Database for Europe, for catchments of mean area of 6.4 km2. The assessment is based on available European databases that allowed pinpointing waste emissions to a high spatial and conceptual resolution. Content gaps, particularly concerning domestic waste from isolated dwellings, were filled through alternative sources of information, exploiting population density and national statistics data. The dataset is of interest for assessing waste emissions to and fate through European fresh and marine waters also beyond the three pollutants evaluated in this study.

4.
Sci Total Environ ; 662: 434-445, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30690377

ABSTRACT

In this paper, we build a preliminary inventory of dissolved phase water emissions of 36 of the 45 chemical priority substances under the European Union's Water Framework Directive. For point sources, we consider the European Pollutant Release and Transfer Register (E-PRTR) containing reported emissions from major industrial facilities. We consider all other sources as diffuse, and we estimate European average chemical emission factors from available measurements of dissolved phase concentrations, assuming simple emission patterns such as population and agricultural land. The emission inventory enables modelling concentrations, which have been compared with independent measurements. Due to the way they are estimated, they cannot withstand a point-by-point comparison. However, predicted concentrations exhibit a frequency distribution and order of magnitude compatible with observations, and match a fair proportion of independently reported exceedances of environmental quality standards for many of the substances studied. While apparently a preliminary picture based on crude simplifications, our representation suggests that simple drivers such as population and agriculture are useful to describe chemical pollution at European scale. From our preliminary inventory, E-PRTR industrial point emissions seem to account for a relatively small share of total emissions. Consequently, apart from specific measures such as upgrades to urban wastewater treatment plants in certain high impact areas, the management of priority substances may require a more strategic approach to emission control, addressing chemical use across sectors and the management of out-phased, legacy chemicals. At the same time, we advocate that improving emission inventories requires monitoring data reflecting the variability of emission patterns across Europe, as presently available monitoring data do not enable a catchment-specific estimation of emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...