Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Biomedical Engineering Letters ; (4): 467-479, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-785528

ABSTRACT

Myoelectric prosthesis requires a sensor that can reliably capture surface electromyography (sEMG) signal from amputees for its controlled operation. The main problems with the presently available EMG devices are their extremely high cost, large response time, noise susceptibility, less amplitude sensitivity, and larger size. This paper proposes a compact and affordable EMG sensor for the prosthetic application. The sensor consists of an electrode interface, signal conditioning unit, and power supply unit all encased in a single package. The performance of dry electrodes employed in the skin interface was compared with the conventional Ag/AgCl electrodes, and the results were found satisfactory. The envelope detection technique in the sensor based on the tuned RC parameters enables the generation of smooth, faster, and repeatable EMG envelope irrespective of signal strength and subject variability. The output performance of the developed sensor was compared with commercial EMG sensor regarding signal-to-noise ratio, sensitivity, and response time. To perform this, EMG data with both devices were recorded for 10 subjects (3 amputees and 7 healthy subjects). The results showed 1.4 times greater SNR values and 45% higher sensitivity of the developed sensor than the commercial EMG sensor. Also, the proposed sensor was 57% faster than the commercial sensor in producing the output response. The sEMG sensor was further tested on amputees to control the operation of a self-designed 3D printed prosthetic hand. With proportional control scheme, the myoelectric hand setup was able to provide quicker and delicate grasping of objects as per the strength of the EMG signal.


Subject(s)
Humans , Amputees , Electric Power Supplies , Electrodes , Electromyography , Hand Strength , Hand , Noise , Prostheses and Implants , Reaction Time , Signal-To-Noise Ratio , Skin
2.
Brain Inform ; 4(3): 207-217, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28510210

ABSTRACT

Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.

3.
Int J Yoga ; 10(2): 67-72, 2017.
Article in English | MEDLINE | ID: mdl-28546676

ABSTRACT

AIM: The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on EEG as well as ECG signals for stress regulation. To envision the regulation of stress Determination Test (DT) has been used. We have chosen a control group for contriving a cogent comparison that could be corroborated using statistical tests. SUBJECTS AND METHODS: A total of 20 subjects were taken in the study, of which 10 were allotted to a control group. Electroencephalograph was taken during a DT task, before and after SKY the sky session with 30 days of SKY session given to the experimental group. No SKY was given to the control group. RESULTS: We quantified mental stress using EEG, ECG and DT synergistically and used SKY to regulate it. We observed that alpha band power decreases in the frontal lobe of the brain with increasing mental stress while frontal brain asymmetry decreases with increasing stress tolerance. CONCLUSIONS: These EEG, ECG and DT shows a significant decrement in mental stress and improvement in cognitive performance after SKY, indicating SKY as a good alternative of medication for stress management.

4.
PLoS One ; 11(7): e0159651, 2016.
Article in English | MEDLINE | ID: mdl-27441660

ABSTRACT

BACKGROUND: Drug resistance in tuberculosis is a major public health challenge in developing countries. The limited data available on drug resistance in extra pulmonary tuberculosis stimulated us to design our study on anti-tuberculosis drug resistance pattern in cases of extra pulmonary tuberculosis in a tertiary referral hospital of North India. We performed Geno Type MTBDRplus assay in comparison with conventional drug susceptibility testing by proportion method to study the mutation patterns in rpoB, katG and inhA genes. METHODS: A total of 510 extra pulmonary samples were included in this study. After the smear microscopy, all the specimens were subjected for culture on Lowenstein Jensen (LJ) media. Phenotypic drug susceptibility testing (DST) was performed on LJ media for all the MTB isolates and compared with the results of Geno Type MTBDRplus assay which was performed with the DNA isolated from the culture by conventional method. RESULTS: Of 510 specimens cultured, the total culture positivity obtained was 11.8% (60) encompassing 54 (10.6%) Mycobacterium tuberculosis and 6 (1.2%) non-tubercular mycobacteria (NTM). DST results by Geno Type MTBDRplus assay and solid culture methods were compared in 51 MTB isolates excluding the two Rif indeterminate and one invalid test. Geno Type MTBDRplus accurately identified 13 of 14 rifampicin-resistant strains, 14 of 15 isoniazid-resistant strains and 13 of 14 as multi drug resistant tuberculosis (MDR-TB) in comparison with conventional method. Sensitivity and specificity were 92.86% and 97.30% respectively for detection of RIF resistance, 93.33% and 94.44% respectively for detection of INH resistance, 92.86% and 97.30% respectively for detection of MDR-TB, while the overall concordance of Geno Type MTBDRplus assay with conventional DST was 94.11%. The turn-around time for performing Geno Type MTBDRplus assay test was 48 hours. CONCLUSION: The problem of MDR in extra pulmonary tuberculosis (EPTB) cannot be overlooked and due attention on patients should be given. Routine use of Geno Type MTBDRplus assay for the diagnosis of MDR-EPTB can substantially reduce the time between diagnosis and drug therapy. Culture along with Geno Type MTBDRplus assay could be a solution for rapid and accurate diagnosis of MDR-TB in low bacillary non sputum specimens.


Subject(s)
Mass Screening , Reagent Kits, Diagnostic , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Female , Genotype , Humans , Male , Microbial Sensitivity Tests , Phenotype , Young Adult
5.
Int J Yoga ; 9(1): 72-6, 2016.
Article in English | MEDLINE | ID: mdl-26865775

ABSTRACT

AIMS: The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. SUBJECTS AND METHODS: A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. STATISTICAL ANALYSIS USED: t-test and one-way ANOVA were applied. RESULTS: SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. CONCLUSIONS: SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task.

SELECTION OF CITATIONS
SEARCH DETAIL
...