Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Ecol ; 32(12): 3308-3321, 2023 06.
Article in English | MEDLINE | ID: mdl-36905296

ABSTRACT

Network analysis is an effective tool to describe and quantify the ecological interactions between plants and root-associated fungi. Mycoheterotrophic plants, such as orchids, critically rely on mycorrhizal fungi for nutrients to survive, so investigating the structure of those intimate interactions brings new insights into the plant community assembly and coexistence. So far, there is little consensus on the structure of those interactions, described either as nested (generalist interactions), modular (highly specific interactions) or of both topologies. Biotic factors (e.g., mycorrhizal specificity) were shown to influence the network structure, while there is less evidence of abiotic factor effects. By using next-generation sequencing of the orchid mycorrhizal fungal (OMF) community associated to with plant individuals belonging to 17 orchid species, we assessed the structure of four orchid-OMF networks in two European regions under contrasting climatic conditions (Mediterranean vs. Continental). Each network contained four to 12 co-occurring orchid species, including six species shared among the regions. All four networks were both nested and modular, and fungal communities were different between co-occurring orchid species, despite multiple sharing of fungi across some orchids. Co-occurring orchid species growing in Mediterranean climate were associated with more dissimilar fungal communities, consistent with a more modular network structure compared to the Continental ones. OMF diversity was comparable among orchid species since most orchids were associated with multiple rarer fungi and with only a few highly dominant ones in the roots. Our results provide useful highlights into potential factors involved in structuring plant-mycorrhizal fungus interactions in different climatic conditions.


Subject(s)
Mycorrhizae , Orchidaceae , Humans , Mycorrhizae/genetics , Orchidaceae/genetics , Orchidaceae/microbiology , High-Throughput Nucleotide Sequencing , Plants , Symbiosis/genetics , Phylogeny
2.
Plant Sci ; 311: 111019, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482920

ABSTRACT

Genomics-based diversity analysis of natural vanilla populations is important in order to guide conservation efforts and genetic improvement through plant breeding. Vanilla is a cultivated, undomesticated spice that originated in Mesoamerica prior to spreading globally through vegetative cuttings. Vanilla extract from the commercial species, mainly V. planifolia and V. × tahitensis, is used around the world as an ingredient in foods, beverages, cosmetics, and pharmaceuticals. The global reliance on descendants of a few foundational clones in commercial production has resulted in an industry at heightened risk of catastrophic failure due to extremely narrow genetic diversity. Conversely, national and institutional collections including those near the center of cultivation contain previously undiscovered diversity that could bolster the genetic improvement of vanilla and guide conservation efforts. Towards this goal, an international vanilla genotyping effort generated and analyzed 431,204 single nucleotide polymorphisms among 412 accessions and 27 species from eight collections. Phylogenetic and STRUCTURE analysis sorted vanilla by species and identified hybrid accessions. Principal Component Analysis and the Fixation Index (FST) were used to refine relationships among accessions and showed differentiation among species. Analysis of the commercial species split V. planifolia into three types with all V. × tahitensis accessions being most similar to V. planifolia type 2. Finally, an in-depth analysis of V. × tahitensis identified seven V. planifolia and six V. odorata accessions as most similar to the estimated parental genotypes providing additional data in support of the current hybrid theory. The prevalence of probable V. × tahitensis parental accessions from Belize suggests that V. × tahitensis could have originated from this area and highlights the need for vanilla conservation throughout Central and South America. The genetic groupings among accessions, particularly for V. planifolia, can now be used to focus breeding efforts on fewer accessions that capture the greatest diversity.


Subject(s)
Genomics/classification , Plant Breeding/methods , Vanilla/classification , Vanilla/genetics , Crops, Agricultural/classification , Crops, Agricultural/genetics , Genes, Plant , Genetic Variation , Genotype , Genotyping Techniques , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...