Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13406, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862672

ABSTRACT

This article investigates an inventive methodology for precisely and efficiently controlling photovoltaic emulating (PVE) prototypes, which are employed in the assessment of solar systems. A modification to the Shift controller (SC), which is regarded as a leading PVE controller, is proposed. In addition to efficiency and accuracy, the novel controller places a high emphasis on improving transient performance. The novel piecewise linear-logarithmic adaptation utilized by the Modified-Shift controller (M-SC) enables the controller to linearly adapt to the load burden within a specified operating range. At reduced load resistances, the transient sped of the PVE can be increased through the implementation of this scheme. An exceedingly short settling time of the PVE is ensured by a logarithmic modification of the control action beyond the critical point. In order to analyze the M-SC in the context of PVE control, numerical investigations implemented in MATLAB/Simulink (Version: Simulink 10.4, URL: https://in.mathworks.com/products/simulink.html ) were utilized. To assess the effectiveness of the suggested PVE, three benchmarking profiles are presented: eight scenarios involving irradiance/PVE load, continuously varying irradiance/temperature, and rapidly changing loads. These profiles include metrics such as settling time, efficiency, Integral of Absolute Error (IAE), and percentage error (epve). As suggested, the M-SC attains an approximate twofold increase in speed over the conventional SC, according to the findings. This is substantiated by an efficiency increase of 2.2%, an expeditiousness enhancement of 5.65%, and an IAE rise of 5.65%. Based on the results of this research, the new M-SC enables the PVE to experience perpetual dynamic operation enhancement, making it highly suitable for evaluating solar systems in ever-changing environments.

2.
ISA Trans ; 145: 423-442, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38057172

ABSTRACT

This paper deals with a comparative evaluation of nonlinear controllers based on the linear regression technique, which is a machine learning algorithm for maximum power point tracking. In the past decade, most photovoltaic systems have been equipped with classical algorithms such as perturb and observe, hill climbing, and incremental conductance. The simplicity of these techniques and their ease of implementation were seen as the main reasons for their utilization in photovoltaic systems. However, researchers' attention has recently been attracted by artificial intelligence-based techniques such as linear regression, which offer better performance within the bounds of the nonlinearity of photovoltaic system characteristics. An adaptive terminal synergetic backstepping controller is developed in this paper for a single-ended primary inductance converter. This control scheme is based on the combination of a non-singular terminal synergetic technique with an integral backstepping technique and equally a neural network for the approximation of unmeasured or inaccessible variables that guarantees the finite-time convergence. The proposed controller was further verified under virtual and real environmental conditions, and the numerical results obtained from Matlab/Simulink software under various test conditions, including load variations, show that the adaptive terminal synergetic backstepping controller gives satisfactory performance compared to the adaptive integral backstepping controller used in the same climatic conditions.

3.
Heliyon ; 9(8): e18434, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520983

ABSTRACT

The efficient operation of PV systems relies heavily on maximum power point tracking (MPPT). Additionally, such systems demonstrate complex behavior under partial shading conditions (PSC), with the presence of multiple maximum power points (MPP). Among the existing MPPT algorithms, the conventional perturb and observe, and incremental conductance stand out for their high simplicity. However, they are specialized in single MPP problems. Thus, due to the existence of multiple MPPs under PSC, they fail to track the global MPP. Compared with the conventional schemes, the modified conventional algorithms, and several existing MPPT variants introduce a trade-off between complexity and performance. To enhance the simplicity of the PV system, it is crucial to adapt the operation of the simple conventional algorithm to scenarios under PSC. To achieve such an adaptation, the power-voltage curve that conventionally admits multiple MPPs under PSC must be converted to an equivalent curve having only a single MPP. To address such a requirement, this paper introduces a novel approach to the fast determination of the MPP. A consistent methodology for reducing the complex multiple MPP problem of PV systems under PSC, to a single MPP objective, is put forward. Thus such reduction enhances the tracking environment for simple conventional MPPT algorithms under partial shading. Studies of the PV array behavior for 735 partial shading patterns revealed an interesting possibility of reducing the classical PV curve to 8.2620% of its actual area. The newly established area is an optimum power region that accommodates a single MPP. To arrive at such a reduction, an intelligent neural network-based predictor, incorporating a cost-effective and reliable solar irradiance estimator is put forward. Unlike existing methods, the approach is free from the direct and expensive measurement of solar irradiance. The predictor relies on the PV array current and voltage only to precisely determine the optimum power region of the PV system.

SELECTION OF CITATIONS
SEARCH DETAIL
...