Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Total Environ ; : 174752, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004360

ABSTRACT

Global warming has significantly altered fish distribution patterns in the ocean, shifting towards higher latitudes and deeper waters. This is particularly relevant in high-latitude marine ecosystems, where climate-driven environmental changes are occurring at higher rates than the global average. Species Distribution Models (SDMs) are increasingly being used for predicting distributional shifts in habitat suitability for marine species as a response to climate change. Here, we used SDMs to project habitat suitability changes for a range of high-latitude, pelagic and benthopelagic commercial fish species and crustaceans (10 species); from 1850 to two future climate change scenarios (SSP1-2.6: low climate forcing; and SSP5-8.5: high climate forcing). The study includes 11 Large Marine Ecosystems (LME) spanning South America, Southern Africa, Australia, and New Zealand. We identified declining and southward-shifting patterns in suitable habitat areas for most species, particularly under the SSP5-8.5 scenario and for some species such as Argentine hake (Merluccius hubbsi) in South America, or snoek (Thyrsites atun) off Southern Africa. Geographical constraints will likely result in species from Southern Africa, Australia, and New Zealand facing the most pronounced habitat losses due to rising sea surface temperatures (SST). In contrast, South American species might encounter greater opportunities for migrating southward. Additionally, the SSP5-8.5 scenario predicts that South America will be more environmentally stable compared to other regions. Overall, our findings suggest that the Patagonian shelf could serve as a climate refuge, due to higher environmental stability highlighting the importance of proactive management strategies in this area for species conservation. This study significantly contributes to fisheries and conservation management, providing valuable insights for future protection efforts in the Southern Hemisphere.

2.
Article in English | MEDLINE | ID: mdl-38296669

ABSTRACT

OBJECTIVE: To analyze the prognostic accuracy of the scores NEWS, qSOFA, GYM used in hospital emergency department (ED) in the assessment of elderly patients who consult for an infectious disease. METHODS: Data from the EDEN (Emergency Department and Elderly Need) cohort were used. This retrospective cohort included all patients aged ≥65 years seen in 52 Spanish EDs during two weeks (from 1-4-2019 to 7-4-2019 and 30/3/2020 to 5/4/2020) with an infectious disease diagnosis in the emergency department. Demographic variables, demographic variables, comorbidities, Charlson and Barthel index and needed scores parameters were recorded. The predictive capacity for 30-day mortality of each scale was estimated by calculating the area under the receiver operating characteristic (ROC) curve, and sensitivity and specificity were calculated for different cut-off points. The primary outcome variable was 30-day mortality. RESULTS: 6054 patients were analyzed. Median age was 80 years (IQR 73-87) and 45.3% women. 993 (16,4%) patients died. NEWS score had better AUC than qSOFA (0.765, 95CI: 0.725-0.806, versus 0.700, 95%CI: 0.653-0.746; P < .001) and GYM (0.716, 95%CI: 0.675-0.758; P = .024), and there was no difference between qSOFA and GYM (P = .345). The highest sensitivity scores for 30-day mortality were GYM ≥ 1 point (85.4%) while the qSOFA score ≥2 points showed high specificity. In the case of the NEWS scale, the cut-off point ≥4 showed high sensitivity, while the cut-off point NEWS ≥ 8 showed high specificity. CONCLUSION: NEWS score showed the highest predictive capacity for 30-day mortality. GYM score ≥1 showed a great sensitivity, while qSOFA ≥2 scores provide the highest specificity but lower sensitivity.

3.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241794

ABSTRACT

Fungal volatile organic compounds (VOCs) are responsible for fungal odor and play a key role in biological processes and ecological interactions. VOCs represent a promising area of research to find natural metabolites for human exploitation. Pochonia chlamydosporia is a chitosan-resistant nematophagous fungus used in agriculture to control plant pathogens and widely studied in combination with chitosan. The effect of chitosan on the production of VOCs from P. chlamydosporia was analyzed using gas chromatography-mass spectrometry (GC-MS). Several growth stages in rice culture medium and different times of exposure to chitosan in modified Czapek-Dox broth cultures were analyzed. GC-MS analysis resulted in the tentative identification of 25 VOCs in the rice experiment and 19 VOCs in the Czapek-Dox broth cultures. The presence of chitosan in at least one of the experimental conditions resulted in the de novo production of 3-methylbutanoic acid and methyl 2,4-dimethylhexanoate, and oct-1-en-3-ol and tetradec-1-ene in the rice and Czapek-Dox experiments, respectively. Other VOCs changed their abundance because of the effect of chitosan and fungal age. Our findings suggest that chitosan can be used as a modulator of the production of VOCs in P. chlamydosporia and that there is also an effect of fungal age and exposure time.


Subject(s)
Chitosan , Hypocreales , Volatile Organic Compounds , Humans , Chitosan/pharmacology , Volatile Organic Compounds/pharmacology , Hypocreales/metabolism
4.
Brain Behav Evol ; 98(1): 1-21, 2023.
Article in English | MEDLINE | ID: mdl-36265454

ABSTRACT

The amygdala is a central node in functional networks regulating emotions, social behavior, and social cognition. It develops in the telencephalon and includes pallial and subpallial parts, but these are extremely complex with multiple subdivisions, cell types, and connections. The homology of the amygdala in nonmammals is highly controversial, especially for the pallial part, and we are still far from understanding general principles on its organization that are common to different groups. Here, we review data on the adult functional architecture and developmental genoarchitecture of the amygdala in different amniotes (mammals and sauropsids), which are helping to disentangle and to better understand this complex structure. The use of an evolutionary developmental biology (evo-devo) approach has helped distinguish three major divisions in the amygdala, derived from the pallium, the subpallium, and from a newly identified division called telencephalon-opto-hypothalamic domain (TOH). This approach has also helped identify homologous cell populations with identical embryonic origins and molecular profiles in the amygdala of different amniotes. While subpallial cells produce different subtypes of GABAergic neurons, the pallium and TOH are major sources of glutamatergic cells. Available data point to a development-based molecular code that contributes to shape distinct functional subsystems in the amygdala, and comparative genoarchitecture is helping to delineate the cells involved in same subsystems in non-mammals. Thus, the evodevo approach can provide crucial information to understand common organizing principles of the amygdala cells and networks that control behavior, emotions, and cognition in amniotes.


Subject(s)
Cerebral Cortex , Telencephalon , Animals , Amygdala , Mammals
5.
Front Genet ; 14: 1274108, 2023.
Article in English | MEDLINE | ID: mdl-38476463

ABSTRACT

Inherited mutations in the CHEK2 gene have been associated with an increased lifetime risk of developing breast cancer (BC). We aim to identify in the study population the prevalence of mutations in the CHEK2 gene in diagnosed BC patients, evaluate the phenotypic characteristics of the tumor and family history, and predict the deleteriousness of the variants of uncertain significance (VUS). A genetic study was performed, from May 2016 to April 2020, in 396 patients diagnosed with BC at the University Hospital Lozano Blesa of Zaragoza, Spain. Patients with a genetic variant in the CHEK2 gene were selected for the study. We performed a descriptive analysis of the clinical variables, a bibliographic review of the variants, and a cosegregation study when possible. Moreover, an in-depth bioinformatics analysis of CHEK2 VUS was carried out. We identified nine genetic variants in the CHEK2 gene in 10 patients (two pathogenic variants and seven VUS). This supposes a prevalence of 0.75% and 1.77%, respectively. In all cases, there was a family history of BC in first- and/or second-degree relatives. We carried out a cosegregation study in two families, being positive in one of them. The bioinformatics analyses predicted the pathogenicity of six of the VUS. In conclusion, CHEK2 mutations have been associated with an increased risk for BC. This risk is well-established for foundation variants. However, the risk assessment for other variants is unclear. The incorporation of bioinformatics analysis provided supporting evidence of the pathogenicity of VUS.

6.
ACS Omega ; 7(41): 36300-36306, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278058

ABSTRACT

The objective of this paper is to measure the vapor pressure of potassium chloride (KCl) in its mixture with potassium sulfate (K2SO4). Evaporation behavior of pure salts of KCl, K2SO4, and their mixtures at different molar fractions were examined using a simultaneous thermogravimetric analyzer (STA) at different temperatures with a pair of crucibles (outer: platinum; inner: alumina). The dependence of the vapor pressure of KCl on its molar fraction in mixtures of KCl + K2SO4 was obtained on the basis of relative pressure. Results show that vapor pressure of KCl is increased to 1.2 times when a small amount of K2SO4 (molar fraction from 0.05 to 0.20) is added. Evaporation of KCl will be inhibited by K2SO4 when the molar fraction of K2SO4 is higher than 0.27, which is its fraction in the eutectic system of KCl + K2SO4. Vapor pressure of KCl decreases significantly with increasing molar fractions of K2SO4 at its inhibition scope.

7.
Lancet Microbe ; 3(10): e735-e743, 2022 10.
Article in English | MEDLINE | ID: mdl-35985351

ABSTRACT

BACKGROUND: Serotype 24F is one of the emerging pneumococcal serotypes after the introduction of pneumococcal conjugate vaccine (PCV). We aimed to identify lineages driving the increase of serotype 24F in France and place these findings into a global context. METHODS: Whole-genome sequencing was performed on a collection of serotype 24F pneumococci from asymptomatic colonisation (n=229) and invasive disease (n=190) isolates among individuals younger than 18 years in France, from 2003 to 2018. To provide a global context, we included an additional collection of 24F isolates in the Global Pneumococcal Sequencing (GPS) project database for analysis. A Global Pneumococcal Sequence Cluster (GPSC) and a clonal complex (CC) were assigned to each genome. Phylogenetic, evolutionary, and spatiotemporal analysis were conducted using the same 24F collection and supplemented with a global collection of genomes belonging to the lineage of interest from the GPS project database (n=25 590). FINDINGS: Serotype 24F was identified in numerous countries mainly due to the clonal spread of three lineages: GPSC10 (CC230), GPSC16 (CC156), and GPSC206 (CC7701). GPSC10 was the only multidrug-resistant lineage. GPSC10 drove the increase in 24F in France and had high invasive disease potential. The international dataset of GPSC10 (n=888) revealed that this lineage expressed 16 other serotypes, with only six included in 13-valent PCV (PCV13). All serotype 24F isolates were clustered in a single clade within the GPSC10 phylogeny and long-range transmissions were detected from Europe to other continents. Spatiotemporal analysis showed GPSC10-24F took 3-5 years to spread across France and a rapid change of serotype composition from PCV13 serotype 19A to 24F during the introduction of PCV13 was observed in neighbouring country Spain. INTERPRETATION: Our work reveals that GPSC10 alone is a challenge for serotype-based vaccine strategy. More systematic investigation to identify lineages like GPSC10 will better inform and improve next-generation preventive strategies against pneumococcal diseases. FUNDING: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control and Prevention.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Phylogeny , Pneumococcal Infections/epidemiology , Serogroup , Streptococcus pneumoniae/genetics , Vaccines, Conjugate
8.
Nat Commun ; 13(1): 3913, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798748

ABSTRACT

Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity.


Subject(s)
Aromatase , Parvalbumins , Animals , Aromatase/genetics , Estradiol/pharmacology , Female , Hippocampus/physiology , Interneurons/physiology , Male , Mice , Parvalbumins/genetics , Parvalbumins/metabolism , Synapses/metabolism
9.
Chemosphere ; 301: 134662, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35447206

ABSTRACT

Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g-1 and a maximum reported sorption capacity of 22.8 mg NH4+ g-1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g-1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed.


Subject(s)
Charcoal , Motivation , Adsorption , Charcoal/chemistry , Soil
10.
Front Neural Circuits ; 16: 831074, 2022.
Article in English | MEDLINE | ID: mdl-35250495

ABSTRACT

Taking advantage of two Otp-specific reporter lines of transgenic mice (Otp-eGFP and Otp-Cre; Rpl22-HA), we identify and describe different Otp cell populations across various pallial regions, including the pallial amygdala, the piriform cortex, the mesocortex, the neocortex, and the hippocampal complex. Some of these populations can be followed throughout development, suggesting migration from external sources (for example, those of the pallial amygdala and at least some of the cingulate cortex). Other cells become visible during postnatal development (some of those in the neocortex and hippocampal formation) or in adulthood (those of the parahippocampal lobe), and seem to be produced locally. We discuss the possible role of Otp in these different populations during different moments of ontogenesis. We also analyze the connectivity patterns of some of these cells and discuss their functional implications. For example, our data suggest that Otp cells of the pallial amygdala might be engaged in networks with other Otp cells of the medial amygdala with the same embryonic origin, and may regulate specific aspects of social behavior. Regarding Otp cells in the parahippocampal lobe, they seem to be projection neurons and may regulate hippocampal function during spatial navigation and memory formation. The two reporter transgenic mice employed here provide very powerful tools for high precision studies on these different Otp cells of the pallium, but careful attention should be paid to the age and to differences between lines.


Subject(s)
Amygdala , Cerebral Cortex , Amygdala/metabolism , Animals , Cerebral Cortex/metabolism , Hippocampus/metabolism , Homeodomain Proteins/metabolism , Interneurons/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism
11.
Dalton Trans ; 49(26): 9148-9154, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32578640

ABSTRACT

Metal-organic framework materials with functional side groups are commonly used for various purposes like post-synthetic modification reactions or the tuning of pore geometries. Additionally, the mixed-linker concept, in which different linkers are statistically distributed over equivalent lattice positions, is a versatile approach to adjust the number of functional groups within the framework. However, neither functional side groups nor the mixed-linker approach have been used in MIL-53 materials with divalent metal ions yet. In the present work, we report on the synthesis of MIL-53(Ni)-Br(100), which contains only 2-bromoterephthalate as a linker molecule, and mixed-linker MIL-53(Ni)-Br(50) containing both terephthalate and 2-bromoterephthalate. These two materials represent the first functionalized and mixed-linker MIL-53 materials in combination with a divalent metal. Consequently, the possibilities to tailor the properties of the still rarely used divalent MIL-53 materials were expanded.

12.
Chemosphere ; 214: 743-753, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30293028

ABSTRACT

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g-1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g-1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars.


Subject(s)
Biomass , Charcoal/chemistry , Metals/chemistry , Adsorption
13.
Nat Commun ; 8(1): 1089, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057875

ABSTRACT

Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

14.
Int J Mol Sci ; 18(1)2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28124993

ABSTRACT

Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2-L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality.


Subject(s)
Extremities/innervation , Growth Hormone/therapeutic use , Spinal Cord Diseases/drug therapy , Spinal Cord Diseases/rehabilitation , Child , Humans , Imaging, Three-Dimensional , Infant , Magnetic Resonance Imaging , Male , Syndrome
15.
J Agric Food Chem ; 64(2): 513-27, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26693953

ABSTRACT

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Subject(s)
Charcoal/analysis , Chemistry Techniques, Analytical/standards , Laboratories/standards , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Reference Standards , Reproducibility of Results
16.
J Agric Food Chem ; 62(17): 3791-9, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24720814

ABSTRACT

Biochar properties vary, and characterization of biochars is necessary for assessing their potential to sequester carbon and improve soil functions. This study aimed at assessing key surface properties of agronomic relevance for products from slow pyrolysis at 250-800 °C, hydrothermal carbonization (HTC), and flash carbonization. The study further aimed at relating surface properties to current characterization indicators. The results suggest that biochar chemical composition can be inferred from volatile matter (VM) and is consistent for corncob and miscanthus feedstocks and for the three tested production methods. High surface area was reached within a narrow temperature range around 600 °C, whereas cation exchange capacity (CEC) peaked at lower temperatures. CEC and pH values of HTC chars differed from those of slow pyrolysis biochars. Neither CEC nor surface area correlated well with VM or atomic ratios. These results suggest that VM and atomic ratios H/C and O/C are good indicators of the degree of carbonization but poor predictors of the agronomic properties of biochar.


Subject(s)
Charcoal/chemistry , Hydrogen-Ion Concentration , Surface Properties , Temperature
18.
Ther Clin Risk Manag ; 6: 585-92, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21151628

ABSTRACT

Cerebral palsy is an important health issue that has a strong socioeconomic impact. There is no cure for cerebral palsy, and therapeutic approaches only report small benefits for affected people. In this study we assessed the effects of growth hormone treatment (0.3 µg/kg/day) combined with physical rehabilitation in the recovery of gross motor function in children with growth hormone deficiency and cerebral palsy (four males and six females, mean age 5.63 ± 2.32 years) as compared with that observed in a similar population of cerebral palsy children (five males, five females, mean age 5.9 ± 2.18 years) without growth hormone deficiency treated only with physical rehabilitation for two months. The Gross Motor Function Measure (GMFM-88) and Modified Ashworth Scale were performed before commencing the treatment and after completion thereof. In children with cerebral palsy and growth hormone deficiency, Dimension A (P < 0.02), dimension B (P < 0.02), and dimension C (P < 0.02) of the GMFM-88, and the total score of the test (P < 0.01) significantly improved after the treatment; dimension D and dimension E did not increase, and four of five spastic patients showed a reduction in spasticity. However, in children with cerebral palsy and without growth hormone deficiency, only the total score of the test improved significantly after the treatment period. This indicates that growth hormone replacement therapy was responsible for the large differences observed between both groups in response to physical rehabilitation. We propose that the combined therapy involving growth hormone administration and physical rehabilitation may be a useful therapeutic approach in the recovery of gross motor function in children with growth hormone deficiency and cerebral palsy.

SELECTION OF CITATIONS
SEARCH DETAIL
...