Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biophys Rev ; 15(4): 431-438, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681102

ABSTRACT

In 1972, a group of young Argentinean scientists nucleated in the so-called Membrane Club constituted the Biophysical Society of Argentina (SAB). Over the years, this Society has grown and embraced new areas of research and emerging technologies. In this commentary, we provide an overview of the early stages of biophysics development in Argentina and highlight some of the notable achievements made during the past five decades. The SAB Annual Meetings have been a platform for intense scientific discussions, and the Society has fostered numerous international connections, becoming a hallmark of SAB activities over these 50 years. Initially centered on membrane biophysics, SAB focus has since expanded to encompass diverse fields such as molecular, cellular, and systems biophysics.

2.
J Phys Chem B ; 127(24): 5432-5444, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37289558

ABSTRACT

Anthocyanins are the main active compounds in blueberry. However, they have poor oxidation stability. If anthocyanins are encapsulated in protein nanoparticles, their oxidation resistance could be increased as a result of the slowing down of the oxidation process. This work describes the advantages of using a γ-irradiated bovine serum albumin nanoparticle bound to anthocyanins. The interaction was characterized biophysically, mainly by rheology. By computational calculation and simulation based on model nanoparticles, we estimated the number of molecules forming the albumin nanoparticles, which allowed us to infer the ratio of anthocyanin/nanoparticles. Measurements by UV-vis spectroscopy, FTIR spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), ζ potential, electron transmission microscopy, and rheology at room (25 °C) and physiological (37 °C) temperatures were performed. The spectroscopy measurements allowed identifying additional hydrophobic sites created during the irradiation process of the nanoparticle. On the basis of the rheological studies, it was observed that the BSA-NP trend is a Newtonian flow behavior type for all the temperatures selected, and there is a direct correlation between dynamic viscosity and temperature values. Furthermore, when anthocyanins are added, the system increases its resistance to the flow as reflected in the morphological changes observed by TEM, thus confirming the relationship between viscosity values and aggregate formation.


Subject(s)
Anthocyanins , Nanoparticles , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Oxidation-Reduction
3.
Biophys Rev ; 13(6): 925-930, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35059018

ABSTRACT

This review is directed to researchers interested in a new point of view with relevance to nano-biomedicine. The first part covers the uses and potential of diacetylene lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) in facilitating biological target recognition. The second part concentrates on the use of albumin as a "soft" coating for nanoparticles. This review makes comment on how fabricated nanoparticles will assist with future human health applications.

4.
J Biotechnol ; 306: 169-176, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31605747

ABSTRACT

Protein nanoparticle designing at the nanoscale is challenging because of protein vulnerability to chemical and physical degradation during processing and biodistribution. We present a crosslinked gamma irradiated albumin-based nanoparticle as a potential drug delivery system. The focus was set on the study of the nanoparticle under adverse experimental conditions: different pH values, SDS, tween 80 and urea. The albumin-based nanoparticle was also tested against time stabilityand ionic strength solutions Regarding its stability against pH, the nanoparticle showed similarity to the behaviour of albumin, whilst the stability of the nanoparticle improved in urea and Tween 80. The nanoparticle was stable for 15 days, and presented no protein degradation in solutions up to 2 M salt concentration. Moreover, it presented a better and controlled drug release at slightly acidic pH values than at physiological pH. Results highlight the potentiality of the nanoparticle due to its biophysical properties as a drug delivery system. The hydrophobic character of the albumin molecules changes when they are in aggregating conditions, and treated with gamma irradiation. Our results reveal that stability of the nanoparticle can result from a competition between short-range attraction and long-range repulsion. They provide a framework for understanding the stability and functioning of nanoparticles. Most interesting, the results here serve as a platform for improving the design of the nanoparticle for future in vivo testing.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/radiation effects , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems , Gamma Rays , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Osmolar Concentration , Particle Size , Protein Stability
5.
Mater Sci Eng C Mater Biol Appl ; 103: 109813, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349435

ABSTRACT

A γ-irradiated bovine albumin serum-based nanoparticle was characterised structurally, and functionally. The nanoparticle was characterised by A.F.M., D.L.S, zeta potential, T.E.M., gel-electrophoresis, and spectroscopy. We studied the stability of the nanoparticle at different pH values and against time, by fluorescence spectroscopy following the changes in the tryptophan environment in the nanoparticle. The nanoparticle was also functionalized with Folic Acid, its function as a nanovehicle was evaluated through its interaction with the hydrophobic drug Emodin. The binding and kinetic properties of the obtained complex were evaluated by biophysical methods as well as its toxicity in tumor cells. According to its biophysics, the nanoparticle is a spherical nanosized vehicle with a hydrodynamic diameter of 70 nm. Data obtained describe the nanoparticle as nontoxic for cancer cell lines. When combined with Emodin, the nanoparticle proved to be more active on MCF-7 cancer cell lines than the nanoparticle without Emodin. Significantly, the albumin aggregate preserves the main activity-function of albumin and improved characteristics as an excellent carrier of molecules. More than carrier properties, the nanoparticle alone induced an immune response in macrophages which may be advantageous in vaccine and cancer therapy formulation.


Subject(s)
Drug Carriers/chemistry , Emodin/administration & dosage , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Drug Delivery Systems , Emodin/pharmacology , Folic Acid/chemistry , Gamma Rays , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Microscopy, Atomic Force , Microscopy, Electron, Transmission , NF-kappa B/metabolism , Nanoparticles/toxicity , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/toxicity , Spectrometry, Fluorescence
6.
Nanomedicine (Lond) ; 13(11): 1349-1370, 2018 06.
Article in English | MEDLINE | ID: mdl-29949470

ABSTRACT

Silicon blue-emitting nanoparticles (NPs) are promising effectors for photodynamic therapy and radiotherapy, because of their production of reactive oxygen species (ROS) upon irradiation. RESULTS: Amino-functionalized silicon NPs (NH2SiNP) were intrinsically nontoxic below 100 µg/ml in vitro (on two tumor cell lines) and in vivo (zebrafish larvae and embryos). NH2SiNP showed a moderate effect as a photosensitizer for photodynamic therapy and reduced ROS generation in radiotherapy, which could be indicative of a ROS scavenging effect. Encapsulation of NH2SiNP into ultradeformable liposomes improved their skin penetration after topical application, reaching the viable epidermis where neoplastic events occur. CONCLUSION: Subsequent derivatizations after amino-functionalization and incorporation to nanodrug delivery systems could expand the spectrum of the biomedical application of these kind of silicon NPs.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Photosensitizing Agents/administration & dosage , Silicon/administration & dosage , Animals , Cell Survival/drug effects , Humans , Liposomes/administration & dosage , Liposomes/chemistry , Nanoparticles/administration & dosage , Photochemotherapy , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Silicon/chemistry , Zebrafish/growth & development
7.
J Pharm Sci ; 107(9): 2411-2419, 2018 09.
Article in English | MEDLINE | ID: mdl-29802933

ABSTRACT

Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 µM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of DBC.


Subject(s)
Anesthetics, Local/pharmacokinetics , Anesthetics, Local/toxicity , Dibucaine/pharmacokinetics , Dibucaine/toxicity , Motor Activity/drug effects , Pain Measurement/drug effects , Animals , BALB 3T3 Cells , Cell Survival/drug effects , Cell Survival/physiology , Drug Liberation , Liposomes , Male , Mice , Motor Activity/physiology , Pain Measurement/methods , Phosphatidylcholines/pharmacokinetics , Phosphatidylcholines/toxicity , Zebrafish
8.
Int J Pharm ; 544(1): 191-202, 2018 Jun 10.
Article in English | MEDLINE | ID: mdl-29678547

ABSTRACT

Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine.


Subject(s)
Carbamazepine/administration & dosage , Dendrimers/administration & dosage , Drug Delivery Systems , Neuroprotective Agents/administration & dosage , Animals , Carbamazepine/chemistry , Carbamazepine/toxicity , Cell Line , Cells, Cultured , Dendrimers/chemistry , Dendrimers/toxicity , Drug Liberation , Drug Stability , Erythrocytes/drug effects , Freeze Drying , Heart Rate/drug effects , Hemolysis/drug effects , Humans , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Neurodegenerative Diseases , Neuroprotective Agents/chemistry , Neuroprotective Agents/toxicity , Zebrafish/abnormalities , Zebrafish/physiology
9.
J Pharm Biomed Anal ; 126: 66-74, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27174378

ABSTRACT

The aim of this study was to preserve albumin nanoparticle structure/function during the lyophilisation process. Bovine serum albumin nanoparticles were obtained by γ-irradiation. Nanoparticles were lyophilised in buffer, miliQ water or in trehalose/miliQ solution. The size and charge of the nanoparticles were tested after lyophilisation by light scattering and Z potential. The most relevant results in size of BSA nanoparticle were those lyophilised in PBS between 20 and 350nm, assembled in different aggregates, and negative Z potential obtained was 37±8mV in all, and those nanoparticles lyophilised with trehalose had a size range of 70±2nm and a negative Z potential of 20±5mV. Structure determination of surface aminoacids SH groups in the BSA NP lyophilised in PBS showed an increase in the free SH groups. Different aggregates had different amount of SH groups exposure from 55 to 938 (from smaller to bigger aggregates), whereas BSA NP lyophilised with trehalose showed no significant difference if compared with BSA NP. The binding properties of the BSA nanoparticle with a theragnostic probe (merocyanine 540) were studied after lyophilisation. Results showed more affinity between the BSA NP lyophilised with trehalose than that observed with non lyophilised BSA NP. As a result, the lyophilisation condition in trehalose 100µM solution is the best one to preserve the BSA NP structure/function and the one with the enhance binding affinity of the BSA NP.


Subject(s)
Nanoparticles , Pyrimidinones/administration & dosage , Serum Albumin, Bovine/chemistry , Trehalose/chemistry , Drug Carriers/chemistry , Fluorescent Dyes/administration & dosage , Freeze Drying , Particle Size
10.
An Acad Bras Cienc ; 85(1): 137-46, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23460424

ABSTRACT

Nanotechnology is an emerging science with the potential to create new materials and strategies involving manipulation of matter at the nanometer scale (<100 nm). With size-dependent properties, nanoparticles have introduced a new paradigm in pharmacotherapy - the possibility of cell-targeted drug delivery with minimal systemic side effects and toxicity. The present review provides a summary of published findings, especially regarding to nanoparticle formulations for lung diseases. The available data have shown some benefits with nanoparticle-based therapy in the development of the disease and lung remodeling in respiratory diseases. However, there is a wide gap between the concepts of nanomedicine and the published experimental data and clinical reality. In addition, studies are still required to determine the potential of nanotherapy and the systemic toxicity of nanomaterials for future human use.


Subject(s)
Drug Delivery Systems/methods , Lung Diseases/drug therapy , Nanoparticles/therapeutic use , Asthma/drug therapy , Humans , Lung Neoplasms/drug therapy , Tuberculosis, Pulmonary/drug therapy
11.
Protein J ; 31(8): 656-66, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22936492

ABSTRACT

Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.


Subject(s)
Arsenic/chemistry , Arsenicals/chemistry , Carrier Proteins/chemistry , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescent Dyes/chemistry , Arsenic/metabolism , Arsenicals/metabolism , Carrier Proteins/metabolism , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Protein Unfolding , Spectrum Analysis , Temperature , Thioredoxins/chemistry , Thioredoxins/metabolism
12.
Chem Phys Lipids ; 165(5): 589-600, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22771924

ABSTRACT

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC(8,9)PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC(8,9)PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization, MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC(8,9)PC bilayers, there seem to be a correlation between the degree of DC(8,9)PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Phosphorylcholine/chemistry , Photochemical Processes , Polymerization , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Temperature
13.
Med Chem ; 8(2): 222-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22385172

ABSTRACT

Arsenic compounds have shown medical usefulness since they proved to be effective in causing complete remission of acute promyelocytic leukemia. In this work we obtained a fluorescently labeled arsenic compound that can be used with current fluorescence techniques for basic and applied research, focused on arsenic-induced apoptosis studies. This compound is an arsanilic acid bearing a covalently linked FITC that was chemically synthesized and characterized by fluorescence, UV-Vis, mass and FTIR spectrometry. In addition, we assessed its apoptotic activity as well as its fluorescent labeling properties in HL60 cell line as a leukemia cell model through flow cytometry. We obtained a compound with a 1:1 FITC:arsenic ratio and a 595 m/z, confirming its structure by FTIR. This compound proved to be useful at inducing apoptosis in the leukemia cell model and labeling this apoptotic cell population, in such a way that the highest FITC fluorescence correlated with the highest arsenic amount.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsanilic Acid/pharmacology , Cell Separation/methods , Fluorescent Dyes/analysis , Fluorescent Dyes/chemical synthesis , Staining and Labeling/methods , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Arsanilic Acid/chemical synthesis , Arsanilic Acid/chemistry , Drug Screening Assays, Antitumor , Flow Cytometry , Fluorescence , Fluorescent Dyes/chemistry , HL-60 Cells , Humans , Isothiocyanates/chemistry , Molecular Structure , Structure-Activity Relationship
14.
Biotechnol Lett ; 29(11): 1637-44, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17636387

ABSTRACT

Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association. On the other hand, no differences were observed in cell toxicity with lipids up to 1 mg/ml in VERO cells.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Plasmids/genetics , Unilamellar Liposomes , Animals , Cell Survival , Chlorocebus aethiops , Hydrophobic and Hydrophilic Interactions , Unilamellar Liposomes/chemical synthesis , Unilamellar Liposomes/toxicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...