Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 38(4): 30, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25916233

ABSTRACT

With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions.

2.
Rev Sci Instrum ; 83(7): 074903, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852714

ABSTRACT

It was designed and constructed a new thermogravitational column able to operate at high pressures (up to 50 MPa). This new thermogravitational column is of the cylindrical type with closed ends. It is made of stainless steel. The length of the column is 0.5 m and the gap between its two walls is variable. First, the column was validated at atmospheric pressure by means of measurements of the thermodiffusion coefficient of well-known binary mixtures. Then, this new thermogravitational column was used to measure the thermodiffusion coefficient of the binary mixtures 1,2,3,4-tetrahydronaphtalene/isobutylbenzene, 1,2,3,4-tetrahydronaphtalene/n-dodecane, and isobutylbenzene/n-dodecane at high pressures and within the pressure range between 0.1 and 20 MPa at a mean temperature of 25 °C. We have found a linear dependence between the thermodiffusion coefficient and the pressure.


Subject(s)
Complex Mixtures/analysis , Complex Mixtures/chemistry , Hydrocarbons/analysis , Hydrocarbons/chemistry , Thermogravimetry/instrumentation , Thermogravimetry/methods , Diffusion , Equipment Design , Equipment Failure Analysis , Pressure , Thermal Conductivity
3.
J Chem Phys ; 136(24): 244512, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22755592

ABSTRACT

We report on the measurement of diffusion (D), thermodiffusion (D(T)), and Soret (S(T)) coefficients in water-isopropanol mixtures by three different instrumental techniques: thermogravitational column in combination with sliding symmetric tubes, optical beam deflection, and optical digital interferometry. All the coefficients have been measured over the full concentration range. Results from different instruments are in excellent agreement over a broad overlapping composition (water mass fraction) range 0.2 < c < 0.7, providing new reliable benchmark data. Comparison with microgravity measurements (SODI/IVIDIL (Selected Optical Diagnostic Instrument/Influence of VIbration on DIffusion in Liquids)) onboard the International Space Station and with literature data (where available) generally gives a good agreement. Contrary to theoretical predictions and previous experimental expectations we have not observed a second sign change of S(T) at low water concentrations.

4.
J Phys Chem B ; 114(20): 6937-42, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20429569

ABSTRACT

In this work, we have measured the thermodiffusion coefficient of different n-alkane binary mixtures at several concentrations using the thermogravitational technique. In particular, we have studied the n-dodecane/n-heptane system as a function of composition and other systems covering a large range of mass differences and concentration at 25 degrees C and 1 atm. The results show that for any concentration the thermodiffusion coefficient of n-alkane mixtures is proportional to the mass difference between the components and to the ratio of the thermal expansion coefficient and viscosity of the mixture. The obtained equation allows us to determine the infinite dilution values of the thermodiffusion coefficient. We compare these values with recent experimental results in dilute polymer solutions and analyze the Brenner theory of thermodiffusion. Finally, it is shown that the thermodiffusion coefficient depends linearly with the mass fraction, and it can be calculated from the viscosity and thermal expansion of the pure components.

SELECTION OF CITATIONS
SEARCH DETAIL
...