Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 22: 185-194, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30581924

ABSTRACT

This oceanographic dataset was gathered during the TIC-MOC cruise, which was designed to characterize the dynamics of the Brazil-Malvinas Confluence. The cruise was carried on board the R/V Hespérides, with departure from Ushuaia and arrival to Salvador de Bahía. A total of 66 conductivity-temperature-depth (CTD) stations were completed between 8 and 22 March 2015, offshore from the continental platform and within 45°S-35°S and 61°W-50°W. At each station, water samples were collected, which were used to calibrate the CTD salinity-oxygen sensors and to determine inorganic nutrient concentrations, and the horizontal current was measured. Along its track, the vessel recorded surface temperature and salinity, as well as the horizontal flow down to about 700 m. Lastly, eight position-transmitting drifters were launched and two profiling floats were deployed and later recovered.

2.
PLoS One ; 8(12): e82447, 2013.
Article in English | MEDLINE | ID: mdl-24386098

ABSTRACT

It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2-4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.


Subject(s)
Carbon/analysis , Seawater/chemistry , Animals , Biomarkers/analysis , Biomarkers/chemistry , Carbon/chemistry , Cyclonic Storms , Seasons , Spain , Water Movements , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...