Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 171: 116149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38266621

ABSTRACT

Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Humans , Mice, Nude , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Phospholipid Ethers/metabolism , Phospholipid Ethers/pharmacology , Phospholipid Ethers/therapeutic use , Apoptosis , Membrane Microdomains/metabolism
2.
CRISPR J ; 4(4): 519-535, 2021 08.
Article in English | MEDLINE | ID: mdl-34406033

ABSTRACT

Chronic myeloid leukemia (CML) is a hematopoietic malignancy produced by a unique oncogenic event involving the constitutively active tyrosine-kinase (TK) BCR/ABL1. TK inhibitors (TKI) changed its prognosis and natural history. Unfortunately, ABL1 remains unaffected by TKIs. Leukemic stem cells (LSCs) remain, and resistant mutations arise during treatment. To address this problem, we have designed a therapeutic CRISPR-Cas9 deletion system targeting BCR/ABL1. The system was efficiently electroporated to cell lines, LSCs from a CML murine model, and LSCs from CML patients at diagnosis, generating a specific ABL1 null mutation at high efficiency and allowing the edited leukemic cells to be detected and tracked. The CRISPR-Cas9 deletion system triggered cell proliferation arrest and apoptosis in murine and human CML cell lines. Patient and murine-derived xenografts with CRISPR-edited LSCs in NOD SCID gamma niches revealed that normal multipotency and repopulation ability of CRISPR edited LSCs were fully restored. Normal hematopoiesis was restored, avoiding myeloid bias. To the best of our knowledge, we show for the first time how a CRISPR-Cas9 deletion system efficiently interrupts BCR/ABL1 oncogene in primary LSCs to bestow a therapeutic benefit. This study is a proof of concept for genome editing in all those diseases, like CML, sustained by a single oncogenic event, opening up new therapeutic opportunities.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Oncogenes , Animals , Cell Line, Tumor , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Gene Expression , Gene Targeting/methods , Gene Transfer Techniques , Genetic Therapy/methods , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Heterografts , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Mice , Neoplastic Stem Cells/metabolism , Proof of Concept Study
3.
Blood Cancer J ; 11(7): 127, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244476

ABSTRACT

BIRC3 is monoallelically deleted in up to 80% of chronic lymphocytic leukemia (CLL) cases harboring del(11q). In addition, truncating mutations in the remaining allele of this gene can lead to BIRC3 biallelic inactivation, which has been shown to be a marker for reduced survival in CLL. Nevertheless, the biological mechanisms by which these lesions could contribute to del(11q) CLL pathogenesis and progression are partially unexplored. We implemented the CRISPR/Cas9-editing system to generate isogenic CLL cell lines harboring del(11q) and/or BIRC3 mutations, modeling monoallelic and biallelic BIRC3 loss. Our results reveal that monoallelic BIRC3 deletion in del(11q) cells promotes non-canonical NF-κB signaling activation via RelB-p52 nuclear translocation, being these effects allelic dose-dependent and therefore further enhanced in del(11q) cells with biallelic BIRC3 loss. Moreover, we demonstrate ex vivo in primary cells that del(11q) cases including BIRC3 within their deleted region show evidence of non-canonical NF-κB activation which correlates with high BCL2 levels and enhanced sensitivity to venetoclax. Furthermore, our results show that BIRC3 mutations in del(11q) cells promote clonal advantage in vitro and accelerate leukemic progression in an in vivo xenograft model. Altogether, this work highlights the biological bases underlying disease progression of del(11q) CLL patients harboring BIRC3 deletion and mutation.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Alleles , Animals , Cell Line, Tumor , Chromosome Deletion , Disease Progression , Female , Humans , Mice
4.
Leukemia ; 34(6): 1599-1612, 2020 06.
Article in English | MEDLINE | ID: mdl-31974435

ABSTRACT

The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutagenesis, Site-Directed/methods , Adenine/analogs & derivatives , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Chromosome Deletion , Chromosomes, Human, Pair 11/genetics , Drug Synergism , Humans , Mice , Mutation , Phthalazines/pharmacology , Piperazines/pharmacology , Piperidines , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcr/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
5.
Cells ; 9(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31952221

ABSTRACT

BACKGROUND: The t(12;21)(p13;q22), which fuses ETV6 and RUNX1 genes, is the most common genetic abnormality in children with B-cell precursor acute lymphoblastic leukaemia. The implication of the fusion protein in leukemogenesis seems to be clear. However, its role in the maintenance of the disease continues to be controversial. METHODS: Generation of an in vitroETV6/RUNX1 knock out model using the CRISPR/Cas9 gene editing system. Functional characterization by RNA sequencing, proliferation assays, apoptosis and pharmacologic studies, and generation of edited-cell xenograft model. RESULTS: The expression of ETV6/RUNX1 fusion gene was completely eliminated, thus generating a powerful model on which to study the role of the fusion gene in leukemic cells. The loss of fusion gene expression led to the deregulation of biological processes affecting survival such as apoptosis resistance and cell proliferation capacity. Tumour cells showed higher levels of apoptosis, lower proliferation rate and a greater sensitivity to PI3K inhibitors in vitro along as a decrease in tumour growth in xenografts models after ETV6/RUNX1 fusion gene abrogation. CONCLUSIONS: ETV6/RUNX1 fusion protein seems to play an important role in the maintenance of the leukemic phenotype and could thus become a potential therapeutic target.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Models, Biological , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Cell Proliferation , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/genetics , Gene Editing , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-ets/deficiency , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/deficiency , Repressor Proteins/genetics , Tumor Cells, Cultured , ETS Translocation Variant 6 Protein
6.
PLoS One ; 14(5): e0216674, 2019.
Article in English | MEDLINE | ID: mdl-31071190

ABSTRACT

CRISPR/Cas9 allows the generation of knockout cell lines and null zygotes by inducing site-specific double-stranded breaks. In most cases the DSB is repaired by non-homologous end joining, resulting in small nucleotide insertions or deletions that can be used to construct knockout alleles. However, these mutations do not produce the desired null result in all cases, but instead generate a similar, functionally active protein. This effect could limit the therapeutic efficiency of gene therapy strategies based on abrogating oncogene expression, and therefore needs to be considered carefully. If there is an acceptable degree of efficiency of CRISPR/Cas9 delivery to cells, the key step for success lies in the effectiveness of a specific sgRNA at knocking out the oncogene, when only one sgRNA can be used. This study shows that the null effect could be increased with an sgRNA targeting the splice donor site (SDS) of the chosen exon. Following this strategy, the generation of null alleles would be facilitated in two independent ways: the probability of producing a frameshift mutation and the probability of interrupting the canonical mechanism of pre-mRNA splicing. In these contexts, we propose to improve the loss-of-function yield driving the CRISPR system at the SDS of critical exons.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques/methods , RNA Splice Sites/genetics , RNA, Guide, Kinetoplastida/genetics , Alleles , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line , Exons , Gene Editing/methods , Humans , K562 Cells , Mice , Monophenol Monooxygenase/genetics , Proto-Oncogene Proteins c-abl/genetics
7.
Oncotarget ; 8(16): 26027-26040, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28212528

ABSTRACT

CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line.CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.


Subject(s)
CRISPR-Cas Systems , Cell Transformation, Neoplastic/genetics , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Survival/genetics , Disease Models, Animal , Female , Gene Editing , Gene Targeting , Genes, Reporter , Heterografts , Humans , Mice , Mutation , Tumor Burden/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...