Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1171104, 2023.
Article in English | MEDLINE | ID: mdl-37455718

ABSTRACT

Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.

2.
Microbiol Res ; 219: 26-39, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30642464

ABSTRACT

Conventional agricultural practices often rely on synthetic fertilizers and pesticides which have immense and adverse effects on humans, animals and environments. To minimize these effects, scientists world over are now deeply engaged in finding alternative approached for crop production which are less dependent on chemical inputs. One such approach is the use of rhizospheric bacteria as vital components of soil fertility and plant growth promotion (PGP) through their direct and indirect processes in plant rhizospheres. Among the most studied rhizobacteria are the Bacilli, particularly for production of antibiotics, enzymes and siderophores all of which are important aspects of PGP. Despite this, little information is available especially on their potentiality in crop production and their direct application only involves a few species, leaving a majority of these important rhizobacteria unexploited. This paper gives an overview of the unique properties of Bacilli rhizobacteria as well as their different PGP mechanisms that if mined can lead to their successful application and agricultural sustainability. It further points out the missing aspects with regards to these important rhizobacteria that should be considered for future research. This information will be useful in analyzing the PGP abilities of Bacilli rhizobacteria with an aim of fully mining their potential for crop production and environmental sustainability.


Subject(s)
Bacillus/metabolism , Biological Control Agents/metabolism , Crop Production/methods , Crops, Agricultural/microbiology , Fertilizers/microbiology , Plant Roots/microbiology , Rhizosphere , Agriculture , Anti-Bacterial Agents/metabolism , Plant Development/physiology , Siderophores/metabolism , Soil Microbiology , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...