Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Health Informatics J ; 28(4): 14604582221135420, 2022.
Article in English | MEDLINE | ID: mdl-36374584

ABSTRACT

The purpose of the healthcare Information System (HIS) is to replace the conventional method of data gathering and organization in hospitals into a modern method of systematic data collection, maintenance and dissemination. There has been an unprecedented rise in the malware and cyber-attacks on HIS recently. Cyber-attacks have become a major crisis for the healthcare industry. To address this scenario, the present paper conducts a study on the security factors integral to the healthcare information system and conducts the performance analysis of these factors. For this intent, the study has employed the Fuzzy Analytic Hierarchy Process (F.AHP) integrated with Technique Order Preference by Similarity to Ideal Solution (TOPSIS) integrated framework for evaluating the performance of each factor. Thereafter, the factors that play a vital role in healthcare data security breaches have been prioritized as per their security weights. Furthermore, the validity of the results obtained by the stated methodology has been established by conducting the sensitivity analysis and comparison of results with the other methods by using the same data set. Based on results thus obtained, the access control and software security have been identified as the most promising security factors.


Subject(s)
Computer Security , Software , Humans , Delivery of Health Care , Information Systems
2.
PeerJ Comput Sci ; 8: e967, 2022.
Article in English | MEDLINE | ID: mdl-35721401

ABSTRACT

A document's keywords provide high-level descriptions of the content that summarize the document's central themes, concepts, ideas, or arguments. These descriptive phrases make it easier for algorithms to find relevant information quickly and efficiently. It plays a vital role in document processing, such as indexing, classification, clustering, and summarization. Traditional keyword extraction approaches rely on statistical distributions of key terms in a document for the most part. According to contemporary technological breakthroughs, contextual information is critical in deciding the semantics of the work at hand. Similarly, context-based features may be beneficial in the job of keyword extraction. For example, simply indicating the previous or next word of the phrase of interest might be used to describe the context of a phrase. This research presents several experiments to validate that context-based key extraction is significant compared to traditional methods. Additionally, the KeyBERT proposed methodology also results in improved results. The proposed work relies on identifying a group of important words or phrases from the document's content that can reflect the authors' main ideas, concepts, or arguments. It also uses contextual word embedding to extract keywords. Finally, the findings are compared to those obtained using older approaches such as Text Rank, Rake, Gensim, Yake, and TF-IDF. The Journals of Universal Computer (JUCS) dataset was employed in our research. Only data from abstracts were used to produce keywords for the research article, and the KeyBERT model outperformed traditional approaches in producing similar keywords to the authors' provided keywords. The average similarity of our approach with author-assigned keywords is 51%.

3.
Comput Intell Neurosci ; 2022: 1820777, 2022.
Article in English | MEDLINE | ID: mdl-35345799

ABSTRACT

Breast cancer is a dangerous disease with a high morbidity and mortality rate. One of the most important aspects in breast cancer treatment is getting an accurate diagnosis. Machine-learning (ML) and deep learning techniques can help doctors in making diagnosis decisions. This paper proposed the optimized deep recurrent neural network (RNN) model based on RNN and the Keras-Tuner optimization technique for breast cancer diagnosis. The optimized deep RNN consists of the input layer, five hidden layers, five dropout layers, and the output layer. In each hidden layer, we optimized the number of neurons and rate values of the dropout layer. Three feature-selection methods have been used to select the most important features from the database. Five regular ML models, namely decision tree (DT), support vector machine (SVM), random forest (RF), naive Bayes (NB), and K-nearest neighbor algorithm (KNN) were compared with the optimized deep RNN. The regular ML models and the optimized deep RNN have been applied the selected features. The results showed that the optimized deep RNN with the selected features by univariate has achieved the highest performance for CV and the testing results compared to the other models.


Subject(s)
Breast Neoplasms , Deep Learning , Bayes Theorem , Breast Neoplasms/diagnosis , Female , Humans , Machine Learning , Support Vector Machine
4.
Comput Intell Neurosci ; 2021: 6628889, 2021.
Article in English | MEDLINE | ID: mdl-34054940

ABSTRACT

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


Subject(s)
Algorithms , Neural Networks, Computer , Animals , Bees , Benchmarking , Learning , Problem Solving
5.
PeerJ Comput Sci ; 7: e805, 2021.
Article in English | MEDLINE | ID: mdl-35036531

ABSTRACT

Breast cancer is one of the leading causes of death in women worldwide-the rapid increase in breast cancer has brought about more accessible diagnosis resources. The ultrasonic breast cancer modality for diagnosis is relatively cost-effective and valuable. Lesion isolation in ultrasonic images is a challenging task due to its robustness and intensity similarity. Accurate detection of breast lesions using ultrasonic breast cancer images can reduce death rates. In this research, a quantization-assisted U-Net approach for segmentation of breast lesions is proposed. It contains two step for segmentation: (1) U-Net and (2) quantization. The quantization assists to U-Net-based segmentation in order to isolate exact lesion areas from sonography images. The Independent Component Analysis (ICA) method then uses the isolated lesions to extract features and are then fused with deep automatic features. Public ultrasonic-modality-based datasets such as the Breast Ultrasound Images Dataset (BUSI) and the Open Access Database of Raw Ultrasonic Signals (OASBUD) are used for evaluation comparison. The OASBUD data extracted the same features. However, classification was done after feature regularization using the lasso method. The obtained results allow us to propose a computer-aided design (CAD) system for breast cancer identification using ultrasonic modalities.

6.
J Healthc Eng ; 2020: 8824907, 2020.
Article in English | MEDLINE | ID: mdl-33354309

ABSTRACT

There is a need to develop an effective data preservation scheme with minimal information loss when the patient's data are shared in public interest for different research activities. Prior studies have devised different approaches for data preservation in healthcare domains; however, there is still room for improvement in the design of an elegant data preservation approach. With that motivation behind, this study has proposed a medical healthcare-IoTs-based infrastructure with restricted access. The infrastructure comprises two algorithms. The first algorithm protects the sensitivity information of a patient with quantifying minimum information loss during the anonymization process. The algorithm has also designed the access polices comprising the public access, doctor access, and the nurse access, to access the sensitivity information of a patient based on the clustering concept. The second suggested algorithm is K-anonymity privacy preservation based on local coding, which is based on cell suppression. This algorithm utilizes a mapping method to classify the data into different regions in such a manner that the data of the same group are placed in the same region. The benefit of using local coding is to restrict third-party users, such as doctors and nurses, when trying to insert incorrect values in order to access real patient data. Efficiency of the proposed algorithm is evaluated against the state-of-the-art algorithm by performing extensive simulations. Simulation results demonstrate benefits of the proposed algorithms in terms of efficient cluster formation in minimum time, minimum information loss, and execution time for data dissemination.


Subject(s)
Confidentiality , Privacy , Algorithms , Cluster Analysis , Delivery of Health Care , Humans
7.
J Healthc Eng ; 2020: 6680002, 2020.
Article in English | MEDLINE | ID: mdl-33489060

ABSTRACT

In the recent era, a liver syndrome that causes any damage in life capacity is exceptionally normal everywhere throughout the world. It has been found that liver disease is exposed more in young people as a comparison with other aged people. At the point when liver capacity ends up, life endures just up to 1 or 2 days scarcely, and it is very hard to predict such illness in the early stage. Researchers are trying to project a model for early prediction of liver disease utilizing various machine learning approaches. However, this study compares ten classifiers including A1DE, NB, MLP, SVM, KNN, CHIRP, CDT, Forest-PA, J48, and RF to find the optimal solution for early and accurate prediction of liver disease. The datasets utilized in this study are taken from the UCI ML repository and the GitHub repository. The outcomes are assessed via RMSE, RRSE, recall, specificity, precision, G-measure, F-measure, MCC, and accuracy. The exploratory outcomes show a better consequence of RF utilizing the UCI dataset. Assessing RF using RMSE and RRSE, the outcomes are 0.4328 and 87.6766, while the accuracy of RF is 72.1739% that is also better than other employed classifiers. However, utilizing the GitHub dataset, SVM beats other employed techniques in terms of increasing accuracy up to 71.3551%. Moreover, the comprehensive outcomes of this exploration can be utilized as a reference point for further research studies that slight assertion concerning the enhancement in extrapolation through any new technique, model, or framework can be benchmarked and confirmed.


Subject(s)
Algorithms , Machine Learning , Adolescent , Aged , Humans , Liver
SELECTION OF CITATIONS
SEARCH DETAIL
...