Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e2027, 2024.
Article in English | MEDLINE | ID: mdl-38855228

ABSTRACT

This article explores detecting and categorizing network traffic data using machine-learning (ML) methods, specifically focusing on the Domain Name Server (DNS) protocol. DNS has long been susceptible to various security flaws, frequently exploited over time, making DNS abuse a major concern in cybersecurity. Despite advanced attack, tactics employed by attackers to steal data in real-time, ensuring security and privacy for DNS queries and answers remains challenging. The evolving landscape of internet services has allowed attackers to launch cyber-attacks on computer networks. However, implementing Secure Socket Layer (SSL)-encrypted Hyper Text Transfer Protocol (HTTP) transmission, known as HTTPS, has significantly reduced DNS-based assaults. To further enhance security and mitigate threats like man-in-the-middle attacks, the security community has developed the concept of DNS over HTTPS (DoH). DoH aims to combat the eavesdropping and tampering of DNS data during communication. This study employs a ML-based classification approach on a dataset for traffic analysis. The AdaBoost model effectively classified Malicious and Non-DoH traffic, with accuracies of 75% and 73% for DoH traffic. The support vector classification model with a Radial Basis Function (SVC-RBF) achieved a 76% accuracy in classifying between malicious and non-DoH traffic. The quadratic discriminant analysis (QDA) model achieved 99% accuracy in classifying malicious traffic and 98% in classifying non-DoH traffic.

2.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37999176

ABSTRACT

Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles (UAV) or satellite imagery has become increasingly popular for crop classification processes, namely soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI) is a significant application of RS technology in agriculture. It involves the use of satellite or aerial imagery to identify and classify different types of food crops grown in a specific area. This information can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI) technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop planting, typical classification approaches have a lower classification performance. However, the DL technique can detect and categorize crop types effectively and has a stronger feature extraction capability. In this aspect, this study designed a new remote sensing imagery data analysis using the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC) technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is applied for the optimal hyperparameter selection process in order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the hyperparameters, thereby improving the classification accuracy and generalization capabilities. For crop type detection and classification, an extreme learning machine (ELM) model can be used. The simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach over existing DL techniques.

3.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37999179

ABSTRACT

Breast cancer (BC) is a prevalent disease worldwide, and accurate diagnoses are vital for successful treatment. Histopathological (HI) inspection, particularly the detection of mitotic nuclei, has played a pivotal function in the prognosis and diagnosis of BC. It includes the detection and classification of mitotic nuclei within breast tissue samples. Conventionally, the detection of mitotic nuclei has been a subjective task and is time-consuming for pathologists to perform manually. Automatic classification using computer algorithms, especially deep learning (DL) algorithms, has been developed as a beneficial alternative. DL and CNNs particularly have shown outstanding performance in different image classification tasks, including mitotic nuclei classification. CNNs can learn intricate hierarchical features from HI images, making them suitable for detecting subtle patterns related to the mitotic nuclei. In this article, we present an Enhanced Pelican Optimization Algorithm with a Deep Learning-Driven Mitotic Nuclei Classification (EPOADL-MNC) technique on Breast HI. This developed EPOADL-MNC system examines the histopathology images for the classification of mitotic and non-mitotic cells. In this presented EPOADL-MNC technique, the ShuffleNet model can be employed for the feature extraction method. In the hyperparameter tuning procedure, the EPOADL-MNC algorithm makes use of the EPOA system to alter the hyperparameters of the ShuffleNet model. Finally, we used an adaptive neuro-fuzzy inference system (ANFIS) for the classification and detection of mitotic cell nuclei on histopathology images. A series of simulations took place to validate the improved detection performance of the EPOADL-MNC technique. The comprehensive outcomes highlighted the better outcomes of the EPOADL-MNC algorithm compared to existing DL techniques with a maximum accuracy of 97.83%.

4.
Sensors (Basel) ; 23(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960399

ABSTRACT

Wireless Sensor Networks (WSNs) contain several small, autonomous sensor nodes (SNs) able to process, transfer, and wirelessly sense data. These networks find applications in various domains like environmental monitoring, industrial automation, healthcare, and surveillance. Node Localization (NL) is a major problem in WSNs, aiming to define the geographical positions of sensors correctly. Accurate localization is essential for distinct WSN applications comprising target tracking, environmental monitoring, and data routing. Therefore, this paper develops a Chaotic Mapping Lion Optimization Algorithm-based Node Localization Approach (CMLOA-NLA) for WSNs. The purpose of the CMLOA-NLA algorithm is to define the localization of unknown nodes based on the anchor nodes (ANs) as a reference point. In addition, the CMLOA is mainly derived from the combination of the tent chaotic mapping concept into the standard LOA, which tends to improve the convergence speed and precision of NL. With extensive simulations and comparison results with recent localization approaches, the effectual performance of the CMLOA-NLA technique is illustrated. The experimental outcomes demonstrate considerable improvement in terms of accuracy as well as efficiency. Furthermore, the CMLOA-NLA technique was demonstrated to be highly robust against localization error and transmission range with a minimum average localization error of 2.09%.

5.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37887580

ABSTRACT

In recent research, fake news detection in social networking using Machine Learning (ML) and Deep Learning (DL) models has gained immense attention. The current research article presents the Bio-inspired Artificial Intelligence with Natural Language Processing Deceptive Content Detection (BAINLP-DCD) technique for social networking. The goal of the proposed BAINLP-DCD technique is to detect the presence of deceptive or fake content on social media. In order to accomplish this, the BAINLP-DCD algorithm applies data preprocessing to transform the input dataset into a meaningful format. For deceptive content detection, the BAINLP-DCD technique uses a Multi-Head Self-attention Bi-directional Long Short-Term Memory (MHS-BiLSTM) model. Finally, the African Vulture Optimization Algorithm (AVOA) is applied for the selection of optimum hyperparameters of the MHS-BiLSTM model. The proposed BAINLP-DCD algorithm was validated through simulation using two benchmark fake news datasets. The experimental outcomes portrayed the enhanced performance of the BAINLP-DCD technique, with maximum accuracy values of 92.19% and 92.56% on the BuzzFeed and PolitiFact datasets, respectively.

6.
Sensors (Basel) ; 21(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960483

ABSTRACT

Cloud ERP is a type of enterprise resource planning (ERP) system that runs on the vendor's cloud platform instead of an on-premises network, enabling companies to connect through the Internet. The goal of this study was to rank and prioritise the factors driving cloud ERP adoption by organisations and to identify the critical issues in terms of security, usability, and vendors that impact adoption of cloud ERP systems. The assessment of critical success factors (CSFs) in on-premises ERP adoption and implementation has been well documented; however, no previous research has been carried out on CSFs in cloud ERP adoption. Therefore, the contribution of this research is to provide research and practice with the identification and analysis of 16 CSFs through a systematic literature review, where 73 publications on cloud ERP adoption were assessed from a range of different conferences and journals, using inclusion and exclusion criteria. Drawing from the literature, we found security, usability, and vendors were the top three most widely cited critical issues for the adoption of cloud-based ERP; hence, the second contribution of this study was an integrative model constructed with 12 drivers based on the security, usability, and vendor characteristics that may have greater influence as the top critical issues in the adoption of cloud ERP systems. We also identified critical gaps in current research, such as the inconclusiveness of findings related to security critical issues, usability critical issues, and vendor critical issues, by highlighting the most important drivers influencing those issues in cloud ERP adoption and the lack of discussion on the nature of the criticality of those CSFs. This research will aid in the development of new strategies or the revision of existing strategies and polices aimed at effectively integrating cloud ERP into cloud computing infrastructure. It will also allow cloud ERP suppliers to determine organisations' and business owners' expectations and implement appropriate tactics. A better understanding of the CSFs will narrow the field of failure and assist practitioners and managers in increasing their chances of success.


Subject(s)
Cloud Computing , Commerce
SELECTION OF CITATIONS
SEARCH DETAIL
...