Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 43(2): 6, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32006194

ABSTRACT

The paper carries on our previous investigations on the complementary version of Purcell's rotator (sPr3): a low-Reynolds-number swimmer composed of three balls of equal radii. In the asymptotic regime of very long arms, the Stokes-induced governing dynamics is derived, and then experimented in the context of energy-minimizing self-propulsion characterized in the first part of the paper.

2.
Front Robot AI ; 5: 99, 2018.
Article in English | MEDLINE | ID: mdl-33500978

ABSTRACT

Peristalsis, i.e., a motion pattern arising from the propagation of muscle contraction and expansion waves along the body, is a common locomotion strategy for limbless animals. Mimicking peristalsis in bio-inspired robots has attracted considerable attention in the literature. It has recently been observed that maximal velocity in a metameric earthworm-like robot is achieved by actuating the segments using a "phase coordination" principle. This paper shows that, in fact, peristalsis (which requires not only phase coordination, but also that all segments oscillate at same frequency and amplitude) emerges from optimization principles. More precisely, basing our analysis on the assumption of small deformations, we show that peristaltic waves provide the optimal actuation solution in the ideal case of a periodic infinite system, and that this is approximately true, modulo edge effects, for the real, finite length system. Therefore, this paper confirms the effectiveness of mimicking peristalsis in bio-inspired robots, at least in the small-deformation regime. Further research will be required to test the effectiveness of this strategy if large deformations are allowed.

SELECTION OF CITATIONS
SEARCH DETAIL
...