Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362434

ABSTRACT

The conventional treatment of neurodegenerative diseases (NDDs) is based on the "one molecule-one target" paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as "multi-target-directed ligands" (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development. In this study more than 650,000 compounds were screened by a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically binding or unstable compounds. The selected four hits underwent subsequent refinement through in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics simulations resulting in two hit compounds that constitute a rational basis for further development of multi-target active compounds against NDDs.


Subject(s)
Acetylcholinesterase , Neurodegenerative Diseases , Humans , Acetylcholinesterase/metabolism , Neurodegenerative Diseases/drug therapy , Ligands , Monoamine Oxidase/metabolism , Drug Development , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
2.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630751

ABSTRACT

The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial DNA gyrase and DNA topoisomerase IV as potential pharmacological targets of pseudopurpurin. In this study, estimation of structural similarity to referent antibacterial agents and molecular docking in the DNA gyrase and DNA topoisomerase IV complexes were performed for a homologous series of four hydroxyanthraquinones. Estimation of shape- and chemical feature-based similarity with (S)-gatifloxacin, a DNA gyrase inhibitor, and (S)-levofloxacin, a DNA topoisomerase IV inhibitor, outlined pseudopurpurin and munjistin as the most similar structures. The docking simulations supported the hypothesis for a plausible antibacterial activity of hydroxyanthraquinones. The predicted docking poses were grouped into 13 binding modes based on spatial similarities in the active site. The simultaneous presence of 1-OH and 3-COOH substituents in the anthraquinone scaffold were emphasized as relevant features for the binding modes' variability and ability of the compounds to strongly bind in the DNA-enzyme complexes. The results reveal new potential pharmacological targets of the studied polyphenols and help in their prioritization as drug candidates and dietary supplements.


Subject(s)
DNA Topoisomerase IV , Rubia , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , Gatifloxacin , Molecular Docking Simulation , Polyphenols
3.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408486

ABSTRACT

Quantitative structure-activity relationships (QSAR) are a widely used methodology allowing not only a better understanding of the mechanisms of chemical reactions, including radical scavenging, but also to predict the relevant properties of chemical compounds without their synthesis, isolation and experimental testing. Unlike the QSAR modeling of the kinetic antioxidant assays, modeling of the assays with stoichiometric endpoints depends strongly on the number of hydroxyl groups in the antioxidant molecule, as well as on some integral molecular descriptors characterizing the proportion of OH-groups able to enter and complete the radical scavenging reaction. In this work, we tested the feasibility of a "hybrid" classification/regression approach, consisting of explicit classification of individual OH-groups as involved in radical scavenging reactions, and using further the number of these OH-groups as a descriptor in simple-regression QSAR models of antiradical capacity assays with stoichiometric endpoints. A simple threshold classification based on the sum of trolox-equivalent antiradical capacity values was used, selecting OH-groups with specific radical stability- and reactivity-related electronic parameters or their combination as "active" or "inactive". We showed that this classification/regression modeling approach provides a substantial improvement of the simple-regression QSAR models over those built on the number of total phenolic OH-groups only, and yields a statistical performance similar to that of the best reported multiple-regression QSARs for antiradical capacity assays with stoichiometric endpoints.


Subject(s)
Antioxidants , Quantitative Structure-Activity Relationship , Antioxidants/chemistry , Phenols
4.
Front Pharmacol ; 13: 831791, 2022.
Article in English | MEDLINE | ID: mdl-35321325

ABSTRACT

Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.

5.
Molecules ; 26(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770768

ABSTRACT

The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.


Subject(s)
Biological Products/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Sulfotransferases/chemistry , Biological Products/pharmacology , Cluster Analysis , Flavonoids , Ligands , Molecular Structure , Polyphenols , Structure-Activity Relationship , Sulfotransferases/metabolism
6.
Toxics ; 9(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919268

ABSTRACT

The cytotoxicity and microbicidal capacity of seven organic solvents commonly applied for studying plant extracts and bioactive compounds were systematically investigated based on international standards. Four cell lines of normal (CCL-1, HaCaT) or tumor (A-375, A-431) tissue origin, seven bacterial and one fungal strain were used. The impact of the least toxic solvents in the determination of in vitro cytotoxicity was evaluated using a standardized extract from Vaccinium macrocarpon containing 54.2% v/v proanthocyanidins (CystiCran®). The solvents ethanol, methoxyethanol and polyethylene glycol were the least cytotoxic to all cell lines, with a maximum tolerated concentration (MTC) between 1 and 2% v/v. Ethanol, methanol and polyethylene glycol were mostly suitable for antimicrobial susceptibility testing, with minimum inhibitory concentrations (MICs) ≥ 25% v/v. The MTC values of the solvents dimethyl sulfoxide, dimethoxyethane and dimethylformamide varied from 0.03% to 1.09% v/v. The MICs of dimethyl sulfoxide, methoxyethanol and dimethoxyethane were in the range of 3.125-25% v/v. The cytotoxic effects of CystiCran® on eukaryotic cell lines were directly proportional to the superimposed effect of the solvents used. The results of this study can be useful for selecting the appropriate solvents for in vitro estimation of the cytotoxic and growth inhibitory effects of bioactive molecules in eukaryotic and prokaryotic cells.

7.
Antioxidants (Basel) ; 10(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921802

ABSTRACT

Oxidative stress is associated with the increased production of reactive oxygen species or with a significant decrease in the effectiveness of antioxidant enzymes and nonenzymatic defense. The penetration of oxygen and free radicals in the hydrophobic interior of biological membranes initiates radical disintegration of the hydrocarbon "tails" of the lipids. This process is known as "lipid peroxidation", and the accumulation of the oxidation products as peroxides and the aldehydes and acids derived from them are often used as a measure of oxidative stress levels. In total, 40 phenolic antioxidants were selected for a comparative study and analysis of their chain-breaking antioxidant activity, and thus as modulators of oxidative stress. This included natural and natural-like ortho-methoxy and ortho-hydroxy phenols, nine of them newly synthesized. Applied experimental and theoretical methods (bulk lipid autoxidation, chemiluminescence, in silico methods such as density functional theory (DFT) and quantitative structure-activity relationship ((Q)SAR) modeling) were used to clarify their structure-activity relationship. Kinetics of non-inhibited and inhibited lipid oxidation in close connection with inhibitor transformation under oxidative stress is considered. Special attention has been paid to chemical reactions resulting in the initiation of free radicals, a key stage of oxidative stress. Effects of substituents in the side chains and in the phenolic ring of hydroxylated phenols and biphenols, and the concentration were discussed.

8.
Antioxidants (Basel) ; 9(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380762

ABSTRACT

Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn., a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e., silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and chemical similarity with approved drugs were evaluated in silico, and the potential for interaction with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E A-375 human melanoma cell lines were further performed to examine their effects on these proteins and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be applied to other natural products to reveal their potential targets and mechanism of action.

9.
Methods Mol Biol ; 1966: 261-289, 2019.
Article in English | MEDLINE | ID: mdl-31041755

ABSTRACT

The chapter is focused on methods relevant for predictive toxicology and computer-aided drug design (adverse outcome pathway development, pharmacophore modeling, docking, and 3D QSAR analysis) and applied to study interactions between peroxisome proliferator-activated receptor γ (PPARγ) and its ligands. The methods have been combined to develop an integrated in silico approach allowing both to predict potential PPARγ-mediated hepatotoxicity of receptor's full agonists, thus supporting hazard characterization, and to identify naturally derived antidiabetic triterpenoids potentially acting through PPARγ partial agonism.


Subject(s)
Hypoglycemic Agents/pharmacology , Molecular Docking Simulation/methods , PPAR gamma/metabolism , Humans , Ligands , Oxazoles/pharmacology , PPAR gamma/agonists , PPAR gamma/chemistry , Protein Conformation , Quantitative Structure-Activity Relationship , Rosiglitazone/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/pharmacology
10.
Food Chem Toxicol ; 130: 317-325, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31128217

ABSTRACT

Triterpenoids are well known modulators of metabolic syndrome. One of the suggested modes of action (MoAs) involves peroxisome proliferator-activated receptor gamma (PPARγ) binding. In this study we aimed to: (i) evaluate in silico potential metabolites and PPARγ-mediated MoA of the sapogenin of the main saponin present in a purified saponins' mixture (PSM) from Astragalus glycyphylloides; (ii) estimate in silico and in vivo PSM's toxicity; and (iii) investigate in vivo antihyperglycaemic, hypolipidaemic, antioxidant and hepatoprotective effects of PSM. Metabolites and toxicity were predicted using Meteor and Derek Nexus expert systems (Lhasa Limited) and PPARγ binding was investigated using the software MOE (CCG Inc.). PSM's acute oral toxicity was evaluated in mice and the pharmacological effects were assessed in streptozotocin-induced diabetic spontaneously hypertensive rats (SHRs). Liver histopathology was studied as well. PPARγ weak partial agonism was predicted in silico for 24 probable/plausible Phase I metabolites which docking poses were clustered in 12 different binding modes with characteristic protein-ligand interactions. PSM's beneficial effects on the levels of blood glucose, triglycerides, and total cholesterol, on oxidative stress markers and liver histology in diabetic SHRs were comparable to those of the PPARγ ligand pioglitazone. PSM's safety profile was confirmed in silico and in vivo.


Subject(s)
Astragalus Plant/chemistry , Metabolic Syndrome/drug therapy , Saponins/chemistry , Saponins/pharmacology , Animals , Binding Sites , Blood Pressure/drug effects , Computer Simulation , Diabetes Mellitus, Experimental/drug therapy , Drug Discovery , Female , Male , Mice , Molecular Structure , Oxidative Stress , PPAR gamma/agonists , Protein Binding , Protein Conformation , Rats , Rats, Inbred SHR , Saponins/toxicity
11.
Phytomedicine ; 53: 79-85, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30668415

ABSTRACT

BACKGROUND: In recent years the number of natural products used as pharmaceuticals, components of dietary supplements and cosmetics has increased tremendously requiring more extensive evaluation of their pharmacokinetic properties. PURPOSE: This study aims at combining in vitro and in silico methods to evaluate the gastrointestinal absorption (GIA) of natural flavonolignans from milk thistle (Silybum marianum (L.) Gaertn.) and their derivatives. METHODS: A parallel artificial membrane permeability assay (PAMPA) was used to evaluate the transcellular permeability of the plant main components. A dataset of 269 compounds with measured PAMPA values and specialized software tools for calculating molecular descriptors were utilized to develop a quantitative structure-activity relationship (QSAR) model to predict PAMPA permeability. RESULTS: The PAMPA permeabilities of 7 compounds constituting the main components of the milk thistle were measured and their GIA was evaluated. A freely-available and easy to use QSAR model predicting PAMPA permeability from calculated physico-chemical molecular descriptors was derived and validated on an external dataset of 783 compounds with known GIA. The predicted permeability values correlated well with obtained in vitro results. The QSAR model was further applied to predict the GIA of 31 experimentally untested flavonolignans. CONCLUSIONS: According to both in vitro and in silico results most flavonolignans are highly permeable in the gastrointestinal tract, which is a prerequisite for sufficient bioavailability and use as lead structures in drug development. The combined in vitro/in silico approach can be used for the preliminary evaluation of GIA and to guide further laboratory experiments on pharmacokinetic characterization of bioactive compounds, including natural products.


Subject(s)
Cell Membrane Permeability/drug effects , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Quantitative Structure-Activity Relationship , Silybum marianum/chemistry , Computer Simulation , Dietary Supplements , Flavonolignans/pharmacokinetics , Humans , Intestinal Absorption/drug effects , Membranes, Artificial
12.
Food Chem Toxicol ; 112: 47-59, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29247773

ABSTRACT

The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus.


Subject(s)
Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Drug Partial Agonism , Hypoglycemic Agents/therapeutic use , PPAR gamma/agonists , Saponins/therapeutic use , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Catalase/metabolism , Computer Simulation , Diabetes Mellitus, Type 2/blood , Disease Models, Animal , Homeostasis , Humans , Male , Molecular Docking Simulation , Oxidative Stress , Pioglitazone , Rats, Inbred SHR , Superoxide Dismutase/metabolism , Thiazolidinediones/therapeutic use
13.
Toxicol Appl Pharmacol ; 337: 45-66, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29056366

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is considered to be the most common chronic liver disease. The discovery of natural product-based NAFLD modulators requires a more comprehensive study of their modes of action (MoAs). In this study we analysed available in the literature data for 26 naturally-derived compounds associated with experimental evidence for NAFLD alleviation and outlined potential biomolecular targets and a network of pharmacological MoAs for 12 compounds with the highest number of experimentally supported MoA key events, modulated by them. Despite the general perception that the therapeutic agents of natural origin are safe, an evaluation of ADME-Tox properties of these compounds has also been performed in order to estimate their suitability as drug candidates. We evaluated how the investigated structures fit to Lipinski's "Rule of five" and predicted their potential Phase I biotransformation pathways and toxicological effects using the ACD/Percepta platform, and the Meteor Nexus and Derek Nexus knowledge-based systems. Our results revealed the potential of the studied compounds as lead structures and outlined those of them that needed further optimisation of their pharmacokinetic profiles. The presented combined MoA/in silico approach could be extrapolated to naturally-derived and pathology-relevant lead structures with other biological activities. It could direct their optimisation by a mechanistically justified in silico evaluation.


Subject(s)
Computer Simulation , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions/etiology , Models, Biological , Non-alcoholic Fatty Liver Disease/drug therapy , Toxicology/methods , Xenobiotics/pharmacology , Xenobiotics/toxicity , Animals , Biotransformation , Dose-Response Relationship, Drug , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Risk Assessment , Structure-Activity Relationship , Workflow , Xenobiotics/pharmacokinetics
14.
Toxicology ; 387: 27-42, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28645577

ABSTRACT

This paper reviews in silico models currently available for the prediction of skin permeability. A comprehensive discussion on the developed methods is presented, focusing on quantitative structure-permeability relationships. In addition, the mechanistic models and comparative studies that analyse different models are discussed. Limitations and strengths of the different approaches are highlighted together with the emergent issues and perspectives.


Subject(s)
Models, Biological , Pharmaceutical Preparations/metabolism , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Databases, Chemical , Diffusion , Humans , Particle Size , Permeability , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Quantitative Structure-Activity Relationship , Skin/anatomy & histology , Skin/drug effects , Skin Absorption/drug effects
15.
Nat Prod Commun ; 12(2): 175-178, 2017 Feb.
Article in English | MEDLINE | ID: mdl-30428204

ABSTRACT

Silymarin, the active constituent of Silybum marianum (milk thistle), and its main component, silybin, are products with well-known hepatoprotective, cytoprotective, antioxidant, and chemopreventative properties. Despite substantial in vitro and in vivo investigations of these flavonolignans, their mechanisms of action and potential toxic effects are not fully defined. In this study we explored important ADME/Tox properties and biochemical interactions of selected flavonolignans using in silico methods. A quantitative structure-activity relationship (QSAR) model based on data from a parallel artificial membrane permeability assay (PAMPA) was used to estimate bioavailability after oral administration. Toxic effects and metabolic transformations were predicted using the knowledge-based expert systems Derek Nexus and Meteor Nexus (Lhasa Ltd). Potential estrogenic activity of the studied silybin congeners was outlined. To address further the stereospecificity of this effect the stereoisomeric forms of silybin were docked into the ligand-binding domain of the human estrogen receptor alpha (ERa) (MOE software, CCG). According to our results both stereoisomers can be accommodated into the ERa active site, but different poses and interactions were observed for silybin A and silybin B.


Subject(s)
Silybin/pharmacokinetics , Humans , Intestinal Absorption , Models, Molecular , Molecular Docking Simulation , Silybin/chemistry , Silybin/toxicity
16.
Toxicology ; 392: 140-154, 2017 12 01.
Article in English | MEDLINE | ID: mdl-26836498

ABSTRACT

The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARγ full agonists had the following statistical parameters: q2cv=0.610, Nopt=7, SEPcv=0.505, r2pr=0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development.


Subject(s)
Models, Molecular , PPAR gamma/metabolism , Toxicity Tests/methods , Animals , Binding Sites , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Cricetinae , Databases, Protein , Fatty Liver/metabolism , Fatty Liver/pathology , Feasibility Studies , HEK293 Cells , Haplorhini , Hep G2 Cells , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , PPAR gamma/genetics , Protein Binding , Quantitative Structure-Activity Relationship , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity
17.
Curr Top Med Chem ; 15(2): 85-104, 2015.
Article in English | MEDLINE | ID: mdl-25547098

ABSTRACT

For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade.


Subject(s)
Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Phenols/chemistry , Phenols/pharmacology , Quantum Theory , Molecular Structure , Quantitative Structure-Activity Relationship
18.
Curr Top Med Chem ; 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25496275

ABSTRACT

For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade.

19.
Int J Mol Sci ; 15(5): 7651-66, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24857909

ABSTRACT

The comprehensive understanding of the precise mode of action and/or adverse outcome pathway (MoA/AOP) of chemicals has become a key step toward the development of a new generation of predictive toxicology tools. One of the challenges of this process is to test the feasibility of the molecular modelling approaches to explore key molecular initiating events (MIE) within the integrated strategy of MoA/AOP characterisation. The description of MoAs leading to toxicity and liver damage has been the focus of much interest. Growing evidence underlines liver PPARγ ligand-dependent activation as a key MIE in the elicitation of liver steatosis. Synthetic PPARγ full agonists are of special concern, since they may trigger a number of adverse effects not observed with partial agonists. In this study, molecular modelling was performed based on the PPARγ complexes with full agonists extracted from the Protein Data Bank. The receptor binding pocket was analysed, and the specific ligand-receptor interactions were identified for the most active ligands. A pharmacophore model was derived, and the most important pharmacophore features were outlined and characterised in relation to their specific role for PPARγ activation. The results are useful for the characterisation of the chemical space of PPARγ full agonists and could facilitate the development of preliminary filtering rules for the effective virtual ligand screening of compounds with PPARγ full agonistic activity.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma/agonists , Binding Sites , Databases, Protein , Fatty Liver/metabolism , Fatty Liver/pathology , Humans , Ligands , PPAR gamma/metabolism , Protein Binding , Protein Isoforms/agonists , Protein Isoforms/metabolism , Protein Structure, Tertiary
20.
PPAR Res ; 2014: 432647, 2014.
Article in English | MEDLINE | ID: mdl-24772164

ABSTRACT

Comprehensive understanding of the precise mode of action/adverse outcome pathway (MoA/AOP) of chemicals becomes a key step towards superseding the current repeated dose toxicity testing methodology with new generation predictive toxicology tools. The description and characterization of the toxicological MoA leading to non-alcoholic fatty liver disease (NAFLD) are of specific interest, due to its increasing incidence in the modern society. Growing evidence stresses on the PPAR γ ligand-dependent dysregulation as a key molecular initiating event (MIE) for this adverse effect. The aim of this work was to analyze and systematize the numerous scientific data about the steatogenic role of PPAR γ . Over 300 papers were ranked according to preliminary defined criteria and used as reliable and significant sources of data about the PPAR γ -dependent prosteatotic MoA. A detailed analysis was performed regarding proteins which PPAR γ -mediated expression changes had been confirmed to be prosteatotic by most experimental evidence. Two probable toxicological MoAs from PPAR γ ligand binding to NAFLD were described according to the Organisation for Economic Cooperation and Development (OECD) concepts: (i) PPAR γ activation in hepatocytes and (ii) PPAR γ inhibition in adipocytes. The possible events at different levels of biological organization starting from the MIE to the organ response and the connections between them were described in details.

SELECTION OF CITATIONS
SEARCH DETAIL
...