Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(17): e37163, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296212

ABSTRACT

As facial modification technology advances rapidly, it poses a challenge to methods used to detect fake faces. The advent of deep learning and AI-based technologies has led to the creation of counterfeit photographs that are more difficult to discern apart from real ones. Existing Deep fake detection systems excel at spotting fake content with low visual quality and are easily recognized by visual artifacts. The study employed a unique active forensic strategy Compact Ensemble-based discriminators architecture using Deep Conditional Generative Adversarial Networks (CED-DCGAN), for identifying real-time deep fakes in video conferencing. DCGAN focuses on video-deep fake detection on features since technologies for creating convincing fakes are improving rapidly. As a first step towards recognizing DCGAN-generated images, split real-time video images into frames containing essential elements and then use that bandwidth to train an ensemble-based discriminator as a classifier. Spectra anomalies are produced by up-sampling processes, standard procedures in GAN systems for making large amounts of fake data films. The Compact Ensemble discriminator (CED) concentrates on the most distinguishing feature between the natural and synthetic images, giving the generators a robust training signal. As empirical results on publicly available datasets show, the suggested algorithms outperform state-of-the-art methods and the proposed CED-DCGAN technique successfully detects high-fidelity deep fakes in video conferencing and generalizes well when comparing with other techniques. Python tool is used for implementing this proposed study and the accuracy obtained for proposed work is 98.23 %.

2.
Results Phys ; 30: 104630, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34367891

ABSTRACT

This article discusses short term forecasting of the Novel Corona Virus (COVID -19) data for infected, recovered and active cases using the Machine learned hybrid Gaussian and ARIMA method for the spread in India. The Covid-19 data is obtained from the World meter and MOH (Ministry of Health, India). The data is analyzed for the period from January 30, 2020 (the first case reported) to October 15, 2020. Using ARIMA (2, 1, 0), we obtain the short forecast up to October 31, 2020. The several statistics parameters have tested for the goodness of fit to evaluate the forecasting methods but the results show that ARIMA (2, 1, 0) gives better forecast for the data system. It is observed that COVID 19 data follows quadratic behavior and in long run it spreads with high peak roughly estimated in September 18, 2020. Also, using nonlinear regression it is observed that the trend in long run follows the Gaussian mixture model. It is concluded that COVID 19 will follow secondary shock wave in the month of November 2020. In India we are approaching towards herd immunity. Also, it is observed that the impact of pandemic will be about 441 to 465 days and the pandemic will end in between April-May 2021. It is concluded that primary peak observed in September 2020 and the secondary shock wave to be around November 2020 with sharp peak. Thus, it is concluded that the people should follow precautionary measures and it is better to maintain social distancing with all safety measures as the pandemic situation is not in control due to non-availability of medicines.

SELECTION OF CITATIONS
SEARCH DETAIL