Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 95: 141-148, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28460668

ABSTRACT

The aim of the current study was to improve the selection method of camel oocytes after in vitro maturation by reducing exclusion criteria that were based only on the presence of the first polar body. A combined nuclear and morphometric assessment of camel oocytes after in vitro maturation was included to perform a judgment. The nuclear status of the oocytes, including the presence of the first polar body, meiosis I stage, and lack of nuclear materials, was investigated. The morphometric criteria that comprised the dimensions of each oocyte were as follows: diameter of the whole oocyte, including the zona pellucida (ZPO), zona pellucida thickness (ZPT), ooplasm diameter (OD), the perivitelline space (PVS) area, and PVS diameter. Among the oocytes with different nuclear status, there were no differences in ZPO and ZPT. However, oocytes with no nuclear material showed a significant reduction in OD (110.19 ± 1.4 µm) and a significant increase in PVS area (2139 ± 324.6 µm2) and PVS diameter (13.9 ± 1.96 µm) when compared with oocytes in the meiosis I stage (117.41 ± 2.85 µm, 1287.4 ± 123.4 µm2, and 8.56 ± 0.65 µm, respectively). To simplify the selection, the major difference between meiosis I and degenerated oocytes was the diameter of the PVS, which was greater than the ZPT in degenerated oocytes. Therefore, three groups were morphologically differentiated into oocytes with polar bodies (PB1), meiosis I (MI) oocytes, and degenerated oocytes. MI oocytes were able to extrude the polar body after activation but were not able to develop into blastocysts. In contrast, MI oocytes were able to develop into blastocysts after a biphasic activation protocol in which the oocytes were electrically activated and treated with ionomycin after 2 h. In conclusion, the results obtained by the morphometric assessment allowed us to develop a simple and objective classification system for in vitro matured dromedary camel oocytes, which will lead to accurate oocyte selection for the support of subsequent embryonic development.


Subject(s)
Camelus , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/cytology , Oocytes/physiology , Parthenogenesis/physiology , Animals , Calcium Ionophores/administration & dosage , Electric Stimulation , Female , In Vitro Oocyte Maturation Techniques/methods , Ionomycin/administration & dosage , Meiosis/physiology , Parthenogenesis/drug effects , Polar Bodies/ultrastructure
2.
Theriogenology ; 84(9): 1542-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26329663

ABSTRACT

The present study aimed to evaluate the efficacy of controlled internal drug release (CIDR) to synchronize the follicular wave in dromedary camels (Camelus dromedarius) during the breeding season through ovarian monitoring, evaluating sexual receptivity, and measuring progesterone (P4) and estradiol (E2) levels during and after CIDR treatment. Sixteen camels received a new CIDR containing 1.9 g of P4 for 14 days. Ultrasound ovarian monitoring was performed on the day of insertion and every 3 days until the CIDR was withdrawn. Ultrasound examinations were continued day in day out after the CIDR was withdrawn for 10 days. According to the ultrasound examinations, the percentages of camels in the breeding (follicles: 12-18 mm) and nonbreeding phases were calculated. Blood samples were collected day after day during the experimental period (24 days) from the day that the CIDR was inserted. The serum P4 and E2 concentrations were analyzed using ELISA kits. The sexual receptivity of the camels was tested daily during the course of the experiment. The results revealed that 2 and 4 days after the CIDR was withdrawn, the percentage of camels in the breeding phase (68.75% and 75.00%, respectively) was significantly (P < 0.05) higher than that in the nonbreeding phase (31.25% and 25.00%, respectively). The percentage of camels that were abstinent during CIDR treatment was significantly (P < 0.05) higher than that observed for those who were incompletely receptive or completely receptive. The P4 levels increased significantly (P < 0.05) 2 days after CIDR insertion (1.73 ng/mL) and reached maximum values (2.94 ng/mL) at Day 12. Significant (P < 0.05) decreases in the P4 levels were observed 2 to 4 days after CIDR withdrawal (1.01 and 0.80 ng/mL, respectively). The P4 levels reached minimum values (0.18-0.22 ng/mL) at Day 20 through the end of the experiment. The E2 levels differed insignificantly during and after CIDR treatment in dromedary camels. In conclusion, the treatment of dromedary camels with CIDR produced a uniform increase in serum concentrations of P4 that could completely prevent sexual receptivity but could not suppress the follicular wave. After CIDR withdrawal, the P4 levels fell and induced the emergence of a new follicular wave, and most of the camels were in the breeding (ovulatory) phase 2 to 4 days after withdrawal. Therefore, CIDR can be used to synchronize the follicular wave in dromedary camels.


Subject(s)
Camelus/physiology , Estrous Cycle/physiology , Estrus Synchronization/drug effects , Ovarian Follicle/drug effects , Progesterone/pharmacology , Administration, Intravaginal , Animals , Delayed-Action Preparations , Estradiol/blood , Female , Ovarian Follicle/physiology , Ovulation Induction/veterinary , Progesterone/administration & dosage , Progesterone/blood
3.
Theriogenology ; 84(4): 498-503, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26081136

ABSTRACT

This study was carried out using 300 multiparous Najdi ewes during breeding season to compare the effects of fluorogestone acetate (FGA) sponges and controlled internal drug release (CIDR) dispensers to synchronize estrus on reproductive performance and hormonal profiles. Ewes were equally and randomly allotted into group A (FGA) and group B (CIDR); intravaginal progestagen was administered for 14-day period with intramuscular administration of 600-IU eCG at withdrawal time. Estrus was detected using a vasectomized ram starting 12 hours after progestagen withdrawal and repeated every 12 hours up to 84 hours. Blood samples were collected at the time of progestagen withdrawal (0 hour), 24 hours, and 48 hours. Follicle-stimulating hormone, LH, estradiol, and progesterone serum concentrations were measured using commercial ELISA kits and microtitrimetric plates. Timed laparoscopic insemination was performed 48 hours after progestagen withdrawal. Pregnancy and the number of fetuses were diagnosed by ultrasonography on Day 23 after insemination and confirmed on Days 35 and 60. The results revealed that the retention, vaginal discharge, and drawstring breakage rates after progestagen removal were significantly (P ≤ 0.05) higher in the FGA group (94.00, 98.58, and 9.22, respectively) than those in the CIDR group. On the other hand, pregnancy, fertility, twinning rates, and fecundity were significantly (P ≤ 0.05) higher in the CIDR group (77.86, 75.57, 34.34, and 1.02, respectively) than in the FGA group. Estrus responses in FGA and CIDR groups increased gradually to attain their significantly (P ≤ 0.05) higher percentages after 48 hours of progestagen withdrawal (91.49 and 92.37, respectively); thereafter, they decreased. The overall estrus responses and prolificacy did not differ between the FGA and CIDR groups. Follicle-stimulating hormone was significantly higher in the FGA group at 24 and 48 hours after progestagen withdrawal, whereas LH was significantly higher in the CIDR group at 48 hours after progestagen withdrawal. Estradiol and progesterone were significantly higher in the CIDR group at 0, 24, and 48 hours after progestagen withdrawal. These results indicated that although FGA and CIDR devices are efficient in synchronizing estrus in ewes, CIDR provided higher pregnancy, fertility, twinning rates, and fecundity than FGA.


Subject(s)
Estrus Synchronization/drug effects , Flurogestone Acetate/pharmacology , Progestins/pharmacology , Sheep/physiology , Administration, Intravaginal , Animals , Dosage Forms , Estrus/drug effects , Estrus/physiology , Female , Flurogestone Acetate/administration & dosage , Pregnancy , Progestins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...