Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(21): 9763-9770, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38739043

ABSTRACT

The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa.

2.
Methods Mol Biol ; 1122: 125-37, 2014.
Article in English | MEDLINE | ID: mdl-24639257

ABSTRACT

Nuclear resonance vibrational spectroscopy (NRVS) has been used by physicists for many years. However, it is still a relatively new technique for bioinorganic users. This technique yields a vibrational spectrum for a specific element, which can be easily interpreted. Furthermore, isotopic labeling allows for site-specific experiments. In this chapter, we discuss how to access specific beamlines, what kind of equipment is used in NRVS, and how the sample should be prepared and the data collected and analyzed.


Subject(s)
Magnetic Resonance Spectroscopy , Proteins/analysis , Spectrum Analysis/methods , Calibration , Iron Isotopes , Synchrotrons , Vibration
3.
Inorg Chem ; 52(17): 9948-53, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23962374

ABSTRACT

We used a newer, synchrotron-based, spectroscopic technique (nuclear resonance vibrational spectroscopy, NRVS) in combination with a more traditional one (infrared absorption, IR) to obtain a complete, quantitative picture of the metal center vibrational dynamics in a six-coordinated tin porphyrin. From the NRVS (119)Sn site-selectivity and the sensitivity of the IR signal to (112)Sn/(119)Sn isotope substitution, we identified the frequency of the antisymmetric stretching of the axial bonds (290 cm(-1)) and all the other vibrations involving Sn. Experimentally authenticated density functional theory (DFT) calculations aid the data interpretation by providing detailed normal mode descriptions for each observed vibration. These results may represent a starting point toward the characterization of the local vibrational dynamics of the metallic site in tin porphyrins and compounds with related structures. The quantitative complementariness between IR, NRVS, and DFT is emphasized.


Subject(s)
Metalloporphyrins/chemistry , Tin/chemistry , Models, Molecular , Quantum Theory , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...