Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 41: 107973, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35242950

ABSTRACT

This publication presents in detail five exemplary cases and the algorithm used in the article (Orlob et al. 2022). Defibrillator records for the five exemplary cases were obtained from the German Resuscitation Registry. They consist of accelerometry, electrocardiogram and capnography time series as well as defibrillation times, energies and impedance when recorded. For these cases, experienced physicians annotated time points of cardiac arrest and return of spontaneous circulation or termination of resuscitation attempts, as well as the beginning and ending of every single chest compression period in consensus, as described in Orlob et al. (2022). Furthermore, an algorithm was developed which reliably detects chest compression periods automatically without the time-consuming process of manual annotation. This algorithm allows for an usage in automatic resuscitation quality assessment, machine learning approaches, and handling of big amounts of data (Orlob et al. 2022).

2.
Resuscitation ; 172: 162-169, 2022 03.
Article in English | MEDLINE | ID: mdl-34995686

ABSTRACT

AIM: To introduce and evaluate a new, open-source algorithm to detect chest compression periods automatically by the rhythmic, high amplitude signals from an accelerometer, without processing single chest compression events, and to consecutively calculate the chest compression fraction (CCF). METHODS: A consecutive sample of defibrillator records from the German Resuscitation Registry was obtained and manually annotated in consensus as ground truth. Chest compression periods were determined by different automatic approaches, including the new algorithm. The diagnostic performance of these approaches was assessed. Further, using the different approaches in conjunction with different granularities of manual annotation, several CCF versions were calculated and compared by intraclass correlation coefficient (ICC). RESULTS: 131 defibrillator recordings with a total duration of 5755 minutes were analysed. The new algorithm had a sensitivity of 99.39 (95% CI 99.38, 99.41)% and specificity of 99.17 (95% CI 99.15; 99.18)% to detect chest compressions at any given timepoint. The ICC compared to ground truth was 0.998 for the new algorithm and 0.999 for manual annotation, while the ICC of the proposed algorithm compared to the proprietary software was 0.978. The time required for manual annotation to calculate CCF was reduced by 70.48 (22.55, [94.35, 14.45])%. CONCLUSION: The proposed algorithm reliably detects chest compressions in defibrillator recordings. It can markedly reduce the workload for manual annotation, which may facilitate uniform reporting of measured quality of cardiopulmonary resuscitation. The algorithm is made freely available and may be used in big data analysis and machine learning approaches.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Cardiopulmonary Resuscitation/methods , Defibrillators , Heart Massage/methods , Humans , Out-of-Hospital Cardiac Arrest/therapy , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL
...