Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717294

ABSTRACT

Several technologies can be used for measuring strains of soft materials under high rate impact conditions. These technologies include high speed tensile test, split Hopkinson pressure bar test, digital image correlation and high speed X-ray imaging. However, none of these existing technologies can produce a continuous 3D spatial strain distribution in the test specimen. Here we report a novel passive strain sensor based on poly(dimethyl siloxane) (PDMS) elastomer with covalently incorporated spiropyran (SP) mechanophore to measure impact induced strains. We have shown that the incorporation of SP into PDMS at 0.25 wt% level can adequately measure impact strains via color change under a high strain rate of 1500 s-1 within a fraction of a millisecond. Further, the color change is fully reversible and thus can be used repeatedly. This technology has a high potential to be used for quantifying brain strain for traumatic brain injury applications.


Subject(s)
Benzopyrans/chemistry , Dimethylpolysiloxanes/chemistry , Imaging, Three-Dimensional/methods , Indoles/chemistry , Models, Chemical , Nitro Compounds/chemistry , Brain Injuries, Traumatic/diagnostic imaging , Color , Elasticity , Humans , Imaging, Three-Dimensional/instrumentation , Materials Testing , Pressure , Stress, Mechanical , Tensile Strength , Time Factors
2.
Biomed Sci Instrum ; 51: 143-50, 2015.
Article in English | MEDLINE | ID: mdl-25996711

ABSTRACT

When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for test IOP test data. Though the region of interest of the signals examined in the current study did not contain extremely high frequency content, it is possible that live-fire testing may produce shock waves with higher frequency content. While post-processing filtering can remove experimental artifacts, special care should be taken to minimize or eliminate the possibility of recording these artifacts in the first place.

3.
Biomed Sci Instrum ; 50: 248-53, 2014.
Article in English | MEDLINE | ID: mdl-25405432

ABSTRACT

Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators.

4.
Biomed Sci Instrum ; 48: 20-6, 2012.
Article in English | MEDLINE | ID: mdl-22846260

ABSTRACT

Eye injuries can be caused by a variety of consumer products and toys. Recently, indoor remote controlled (RC) toy helicopters have become very popular. The purpose of this study is to quantify eye injury risk associated with five commercially available RC toy helicopter blades. An experimental matrix of 25 tests was developed to test five different RC toy helicopter blades at full battery power on six postmortem human eyes. A pressure sensor inserted through the optic nerve measured intraocular pressure. Corneal abrasion was assessed post-impact using fluorescein dye. Intraocular pressure was correlated to injury risk for hyphema, lens damage, retinal damage, and globe rupture using published risk functions. All tests resulted in corneal abrasions; however, no other injuries were observed. The 25 tests produced an increase intraocular pressure between 15.2 kPa and 99.3 kPa (114.3 mmHg and 744.7 mmHg). Calculated blade velocities ranged between 16.0 m/s and 25.4 m/s. Injury risk for hyphema was a maximum of 0.2%. Injury risk for lens damage, retinal damage, and globe rupture was 0.0% for all tests. Blade design parameters such as length and mass did not affect the risk of eye injury. This is the first study to quantify the risk of eye injury from RC toy helicopter blades. While corneal abrasions were observed, more serious eye injuries were neither observed nor predicted to have occurred. Results from this study are critical for establishing safe design thresholds for RC toy helicopter blades so that more serious injuries can be prevented.

6.
Curr Eye Res ; 37(4): 279-85, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22440159

ABSTRACT

PURPOSE: Interactive water displays are becoming increasingly popular and can result in direct eye contact. Therefore, the purpose of this study is to investigate eye injury risk from high speed water stream impacts and to provide biomechanically based design parameters for water toys and water park fountains. METHODS: An experimental matrix of 38 tests was developed to impact eight porcine eyes with water streams using a customized pressure system. Two stream diameters (3.2 mm and 6.4 mm) were tested at water velocities between 3.0 m/s and 8.5 m/s. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve and used to determine the injury risk for hyphema, lens dislocation, retinal damage, and globe rupture for each impact. RESULTS: Experimental water stream impacts created a range of intraocular pressures between 3156 mmHg and 7006 mmHg (61 psi to 135 psi). Injury risk varied between 4.4%-27.8% for hyphema, 0.0%-3.0% for lens dislocation, and 0.1%-3.3% for retinal damage. All tests resulted in 0.0% injury risk for globe rupture. The two water stream diameters did not result in significantly different water stream velocities (P = 0.32); however, the variation in water stream diameter did result in significantly different intraocular pressures (P = 0.03) with higher pressures for the 6.4 mm stream. CONCLUSIONS: This is the first study to experimentally measure intraocular pressure from high speed water stream impacts and quantify the corresponding eye injury risk. It is recommended that toy water guns and water park fountains use an upper threshold of 8.5 m/s for water stream velocities to minimize the risk of serious acute eye damage from impacts.


Subject(s)
Eye Injuries/physiopathology , Intraocular Pressure , Play and Playthings/injuries , Water , Animals , Biomechanical Phenomena , Disease Models, Animal , Equipment Design , Eye Injuries/diagnosis , Eye Injuries/prevention & control , Pressure/adverse effects , Risk Factors , Swine , Trauma Severity Indices
7.
Curr Eye Res ; 37(1): 43-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22029489

ABSTRACT

PURPOSE: To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. METHODS: A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35 mm diameter metal ball, a 9.25 mm diameter aluminum rod, and an 11.16 mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. RESULTS: A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. CONCLUSIONS: Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.


Subject(s)
Eye Injuries/physiopathology , Intraocular Pressure/physiology , Physical Stimulation/adverse effects , Wounds, Nonpenetrating/physiopathology , Animals , Disease Models, Animal , Eye Injuries/etiology , Physical Stimulation/methods , Risk Factors , Swine , Wounds, Nonpenetrating/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...