Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37438511

ABSTRACT

The use of alternative energy sources, particularly solar energy, in buildings is rising and spreading around the globe. In this paper, a solar wall is analyzed using a numerical method. On the wall, a number of obstacles are placed in two shapes, rectangular (REC) and semicircular (SEC). The cavities are filled with organic phase-change materials. This study was performed in 7 h in the absence of solar radiation on the wall for different dimensions of obstacles in 5 different modes. Various temperatures have been investigated, including exhaust air temperature (TAR), Trombe wall temperature (TWL), and mean volume % of molten PCM in cavities. COMSOL software is used to carry out this numerical study. The results of this study showed that the use of SECs compared to RECs causes the TWL to be higher. In the most extreme case, at a 16 cm aspect ratio, the use of SECs gives a 2.1 °C increase in TWL relative to the REC one. The outlet TAR is also increased by the usage of SECs. The use of larger dimensions of the cavities has increased the TAR leaving the wall so that the TAR after 7 h of the absence of solar radiation, in the most significant case of SECs, was more than 295.5 K. The use of SECs also increases the PCM freezing time. In the largest case of cavities, using SECs increases the freezing time by 15 min compared to RECs.

2.
Materials (Basel) ; 15(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363205

ABSTRACT

The finite element (FEM) approach is used in this study to model the laminar flow of an eco-friendly nanofluid (NF) within three pipes in a solar system. A solar panel and a supporting phase change material (PCM) that three pipelines flowed through made up the solar system. An organic, eco-friendly PCM was employed. Several fins were used on the pipes, and the NF temperature and panel temperature were measured at different flow rates. To model the NF flow, a two-phase mixture was used. As a direct consequence of the flow rate being raised by a factor of two, the maximum temperature of the panel dropped by 1.85 °C, and the average temperature dropped by 1.82 °C. As the flow rate increased, the temperature of the output flow dropped by up to 2 °C. At flow rates ranging from low to medium to high, the PCM melted completely in a short amount of time; however, at high flow rates, a portion of the PCM remained non-melted surrounding the pipes. An increase in the NF flow rate had a variable effect on the heat transfer (HTR) coefficient.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36364612

ABSTRACT

In this paper, two novel micro heat sinks (MHSs) were designed and subjected to thermal analysis using a numerical method. The fluid used was Boehmite alumina-water nanofluid (NFs) with high volume fractions (VOFs). Studies were conducted to determine the influence of a variety of nanoparticle (NP) shapes, such as platelet brick, blade, cylinder, and Os. The heatsink (HS) was made of copper, and the NFs entered it through the middle and exited via four outlets at the side of the HS. The finite element method was used to simulate the NFs flow and heat transfer in the HSs. For this purpose, Multi Physics COMSOL software was used. The maximum and middle values of HS temperature (T-MAX and T-Mid), thermal resistance (TH-R), heat transfer coefficient (h), FOM, etc., were studied for different NP shapes, and with Reynolds numbers (Re) of 300, 1000, and 1700, and VOFs of 0, 3, and 6%. One of the important outcomes of this work was the better thermal efficiency of the HS with rectangular fins. Moreover, it was discovered that a rise in Re increased the heat transfer. In general, adding NPs with high VOFs to MHSs is not appropriate in terms of heat. The Os shape was the best NP shape, and the platelet shape was the worst NP shape for high NPVOF. When NPs were added to an MHS, the temperature of the MHS dropped by an average of 2.8 or 2.19 K, depending on the form of the pin-fins contained inside the MHS (circular or square). The addition of NPs in the MHS with circular and square pin-fins enhanced the pressure drop by 13.5% and 13.3%, respectively, when the Re = 1700.

4.
Article in English | MEDLINE | ID: mdl-33498677

ABSTRACT

Seawater or brackish water desalination is largely powered by fossil fuels, raising concerns about greenhouse gas emissions, particularly in the arid Middle East region. Many steps have been taken to implement solar resources to this issue; however, all attempts for all processing were concentrated on solar to electric conversion. To address these challenges, a small-scale reverse-osmosis (RO) desalination system that is in part powered by hybrid photovoltaic/thermal (PVT) solar collectors appropriate for a remote community in the Kingdom of Saudi Arabia (KSA) was designed and its power requirements calculated. This system provides both electricity to the pumps and low-temperature thermal energy to pre-heat the feedwater to reduce its viscosity, and thus to reduce the required pumping energy for the RO process and for transporting the feedwater. Results show that both thermal and electrical energy storage, along with conventional backup power, is necessary to operate the RO continuously and utilize all of the renewable energy collected by the PVT. A cost-optimal sizing of the PVT system is developed. It displays for a specific case that the hybrid PVT RO system employs 70% renewable energy while delivering desalinized water for a cost that is 18% less than the annual cost for driving the plant with 100% conventional electricity and no pre-heating of the feedwater. The design allows for the sizing of the components to achieve minimum cost at any desired level of renewable energy penetration.


Subject(s)
Membranes, Artificial , Water Purification , Middle East , Saudi Arabia , Water
5.
Entropy (Basel) ; 22(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33286957

ABSTRACT

Computational fluid dynamics (CFD) has become effective and crucial to several applications in science and engineering. The dynamic behavior of buoyancy induced flow of water in partially heated tall open-ended vertical annulus is analyzed based on a CFD technique. For a vertical annulus, the natural convective heat transfer has a broad application in engineering. The annulus is the most common structure used in various heat transmission systems, from the basic heat transfer device to the most sophisticated atomic reactors. The annular test sections of such a large aspect ratio are of practical importance in the design of equipment's associated with the reactor systems. However, depending on the geometrical structure and heating conditions, it exhibits different flow behavior. The annulus may either be closed or open-ended. In this study, we carry out CFD analysis to examine the thermodynamics properties and the detailed thermal induced flow behavior of the water in Tall open-ended vertical concentric annuli. The purpose of this study is to evaluate the impact of a partially heating on mechanical properties and design parameters like Nusselt number, mass flow rate and pressure defect. For Rayleigh number ranging from 4.4 × 103 to 6.6 × 104, while the Prandtl number is 6.43, the numerical solution was obtained. The modelling result showing the measurement and transient behavior of different parameters is presented. The numerical results would be both qualitatively and quantitatively validated. The presentation of unstable state profiles and heat variables along the annulus are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...