Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 338: 128109, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33091991

ABSTRACT

The impacts of conventional oven roasting at different temperatures and for different times on the physicochemical attributes of sesame seeds obtained from different regions was assessed. The color characteristics (a*, b*, and L* values), ash, moisture, protein, oil, total phenolic, and antioxidant activity of raw sesame seeds and the peroxide value, p-anisidine, fatty acids, and tocopherols of sesame oil varied with source. Oven roasting temperature and time significantly affected the physicochemical properties and bioactive components of sesame seeds and the oil quality from different countries. Roasting variably increased the a* value, antioxidant activity, protein, oil, total phenolic, and tocopherol content, and p-anisidine and peroxide values, whereas it reduced b* and L* values, moisture, and linolenic acid content of sesame seeds from different countries. Roasting conditions and growing locations affected the physiochemical composition and bioactive compounds of seeds. Such factors can influence the quality attributes of sesame seeds and oil and should be considered during processing.


Subject(s)
Chemical Phenomena , Food Handling , Food Quality , Seeds/chemistry , Sesamum/chemistry , Antioxidants/analysis
2.
J Food Sci Technol ; 57(11): 4182-4192, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33071339

ABSTRACT

Oil content of almond kernels ranged from 36.7% in the cultivar T12 to 79.0% in genotype T27. The major fatty acid in almond oil is oleic (62.43% in T7-76.34% in T4) followed by linoleic (13.97% in T4-29.55% in T3) and palmitic (4.97% in T2-7.51% inT3). The main tocopherol in almond oil was α-tocopherol (44.25 mg/100 g in T25-75.56 mg/100 g in T13) that was 44 folds higher than other tocopherols in the oil. Total tocopherol contents of almond oils ranged between 47.42 mg/100 g (T14) and 80.15 mg/100 g (T16). Among macro minerals, K was the highest (5238-14,683 mg/kg), followed by P (3475-11,123 mgkg), Ca (1798-5946 mg/kg), and Mg (2192-3591 mg/kg), whereas Na was the least (334-786 mg/kg) in almond kernel. The total polyphenol was observed in T16 (98.67 mg GAE/100 g), while the least was found in T24 (23.75 mg GAE/100 g). Antioxidant activity was high in T7 (91.18%) and low in T12 (44.59%).

3.
J Oleo Sci ; 69(11): 1367-1371, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055447

ABSTRACT

In this study, bioactive lipid components such as fatty acid composition, tocopherol and total phenolics content and antioxidant activity of few wild plant seed extracts were determined. The oil contents of seed samples changed between 3.75 g/100 g (Onobrychis viciifolia Scop) and 17.94 g/100 g (Pimpinella saxifrage L.). While oleic acid contents of seed oils change between 10.4% (Trifolium repens) and 29.5% (Onobrychis viciifolia Scop), linoleic acid contents of oil samples varied from 16.3% (Onobrychis viciifolia Scop) and 64.2% (Trifolium repens) (p < 0.05). While α-tocopherol contents of oil samples change between 2.112 (Pimpinella saxifrage L.) and 228.279 mg/100 g (Trifolium pratense), É£-tocopherol contents ranged from 0.466 (Phleum pratense) to 67.128 mg/100 g (Onobrychis viciifolia Scop). Also, α-tocotrienol contents of Onobrychis viciifolia Scop and Phleum pratense were 30.815 and 23.787 mg/100 g, respectively. Results showed some differences in total phenol contents and antioxidant activity values of extracts depending on plant species. The present study indicates that this seed oils are rich in fatty acid and tocopherol.


Subject(s)
Antioxidants/analysis , Fabaceae/chemistry , Fatty Acids/analysis , Phleum/chemistry , Pimpinella/chemistry , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Trifolium/chemistry , Oleic Acid/analysis
4.
J Oleo Sci ; 69(11): 1381-1388, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33055451

ABSTRACT

The oil content and the fatty acid composition of roasted and unroasted melon seed and oils were determined. The oil contents of roasted melon seeds changed between 26.4% (Type 12) and 38.7% (Type 4). In general, oil contents of roasted melon seeds were found higher than that of unroasted seeds that could be due to the evaporation of water during roasting processes which consequently lead to increased concentrations of other seed components including oils. Saturated fatty acid contents of unroasted melon seed samples change between 13.5% (Type 6) and 17.1% (Type 20). In addition, polyunsaturated fatty acids of unroasted melon seed oils ranged from 51.9% (Type 13) to 70.2% (Type 6). Palmitic acid contents of roasted seed oils varied between 7.8% (Type 5) and 15.1% (Type 17). In addition, the oleic acid contents ranged from 15.4% (Type 10) to 37.7% (Type17). Also, linoleic acid contents were found between 34.7% (Type 17) and 70.3% (Type 6). Saturated fatty acid contents of roasted melon seed oils ranged from 13.5% (Type 6) to 16.7% (Type 13). The major tocopherols in both roasted and unroasted melon seed oils were α-tocopherol, É£-tocopherol and δ-tocopherols. Melon seed oils are rich in linoleic, oleic acids and É£-tocopherol.


Subject(s)
Cooking , Cucurbitaceae/chemistry , Fatty Acids, Unsaturated/analysis , Fatty Acids/analysis , Hot Temperature , Plant Oils/chemistry , Seeds/chemistry , Tocopherols/analysis , Chromatography, Gas , Chromatography, High Pressure Liquid , Linoleic Acid/analysis , Oleic Acid/analysis , Palmitic Acid/analysis
5.
J Food Sci Technol ; 57(8): 3071-3080, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32624609

ABSTRACT

In this study, phenolic compounds were extracted from Argel leaves using an ultrasound-assisted extraction (UAE) method. The extraction parameters (sonication temperature, time, and ethanol concentration) were optimized using a response surface methodology (Box-Behnken design), in order to maximize the total phenolic content (TPC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity of Argel leaf extracts (ALEs). The phenolic compounds of the ALEs obtained under optimized conditions were also identified. The optimum UAE conditions for achieving maximum TPC (72.27 g gallic acid equivalents kg-1 DW) and DPPH scavenging activity (86.15%) were a 60 °C temperature, a 37.07 min duration, and a 39.14% ethanol concentration. Under these conditions, the experimental values of TPC and DPPH scavenging activity were 73.02 g GAE kg-1 and 85.56%, respectively, which agreed with the predicted values. In addition, the major phenolic acids found in ALEs under the optimized extraction conditions were sinapic, p-coumaric, and ferulic acid. Overall, the findings of this study demonstrated the suitability of UAE and the success of RSM in optimizing the extraction conditions of bioactive compounds from ALEs.

6.
J Food Sci Technol ; 57(6): 2017-2025, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32431328

ABSTRACT

The current study investigated the impact of sonication process on antioxidant activity, phenolic compounds, total phenolic, total flavonoid, oil contents, fatty acids profile, and tocopherols of terebinth (Pistacia terebinthus) fruits. The highest antioxidant activity (87.32%), total phenolic (251.25 mg/100 g) and flavonoid (3413.72 mg/100 g) contents were observed in terebinth fruits sonicated for 30 min. The oil contents of terebinth increased from 38.93% (control) to 42.60% (sonicated for 15 min) after sonication process. The quercetin and catechin were the chief phenolic compounds in P. terebinthus extracts and their values were increased from 129.09 to 467.28 mg/100 g (quercetin) and from 5.58 to 21.33 mg/100 g (catechin) in fruits sonicated for 30 min. The major fatty acids of terebinth fruit oil were oleic (48.02-49.15%), linoleic (22.28-23.48%) and palmitic (22.10-23.67%) and sonication processes did not affect the quantities of these fatty acids. γ-Tocopherol was the most abundant isomer with the value of 63.95-122.03 mg/100 g in terebinth fruit oil. It could be concluded that pre-sonication for 30 min was more suitable for enhancing the antioxidants and phenolic compounds of P. terebinthus fruit.

SELECTION OF CITATIONS
SEARCH DETAIL
...