Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Exp Toxicol ; 40(7): 1194-1207, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33530773

ABSTRACT

Methotrexate (MTX) is frequently used drug in treatment of cancer and autoimmune diseases. Unfortunately, MTX has many side effects including the hepato-renal toxicity. In this study, we hypothesized that Luteolin (Lut) exhibits protective effect against the MTX-induced hepato-renal toxicity. In order to investigate our hypothesis, the experiment was designed to examine the effect of exposure of male rats to MTX (20 mg/kg, i.p., at day 9) alone or together with Lut (50 mg/kg, oral for 14 days) compared to the control rats (received saline). The findings demonstrated that MTX treatment induced significant increases in the liver and kidney functions markers in serum samples including Aspartate transaminase (AST), Alanine transaminase (ALT), creatinine, urea and uric acid. MTX also mediated an oxidative stress expressed by elevated malondialdehyde (MDA) level and decreased level of reduced glutathione (GSH), antioxidant enzyme activities, and downregulation of the Nrf2 gene expression as an antioxidant trigger. Moreover, the inflammatory markers (NF-κB, TNF-α, and IL-1ß) were significantly elevated upon MTX treatment. In addition, MTX showed an apoptotic response mediated by elevating the pro-apoptotic (Bax) and lowering the anti-apoptotic (Bcl-2) proteins. All of these changes were confirmed by the observed alterations in the histopathological examination of the hepatic and renal tissues. Lut exposure significantly reversed all the MTX-induced changes in the measured parameters suggesting its potential protective role against the MTX-induced toxicity. Finally, our findings concluded the antioxidative, anti-inflammatory and anti-apoptotic effects of Lut as a mechanism of its protective role against the MTX-induced hepato-renal toxicity in rats.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Luteolin/pharmacology , Luteolin/therapeutic use , Methotrexate/toxicity , Animals , Antioxidant Response Elements/drug effects , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/physiopathology , Inflammation/chemically induced , Kidney/drug effects , Male , Oxidative Stress/drug effects , Protective Agents/pharmacology , Rats
2.
Hum Exp Toxicol ; 38(7): 762-774, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30943778

ABSTRACT

Androgenetic alopecia is the most common type of alopecia, and it affects humans of both genders. Finasteride is a type II selective 5α-reductase inhibitor that is administered orally to treat androgenetic alopecia and benign prostatic hyperplasia in human males. However, its effect on the vital organs of females is unknown. This study was designed to investigate the effects of finasteride on the vital organs such as liver, kidney, and heart of female mice. To study the prospective effects of finasteride, female mice were orally administered two doses of finasteride (0.5 and 1.5 mg/kg) once daily for 35 days, and serum levels of various biochemical parameters and histopathology of various organs were examined. The results showed that serum levels of alkaline phosphatase were significantly increased by both high- and low-dose finasteride, whereas cholesterol was significantly increased by the high dose only. Creatine kinase was significantly increased by the high and low doses, whereas glucose was significantly decreased by both doses. Histopathological analysis and DNA damage assays showed that finasteride has adverse effects within both the short and the long periods in female mice. In addition, the proapoptotic genes Bax and caspase-3 were significantly increased by high dose finasteride, whereas the antiapoptotic gene Bcl-2 was significantly decreased by the low and high doses. In conclusion, finasteride is not currently approved for therapeutic use in females, and the findings in this study suggest caution in any future consideration of such use.


Subject(s)
5-alpha Reductase Inhibitors/toxicity , Finasteride/toxicity , Alkaline Phosphatase/blood , Animals , Apoptosis/drug effects , Blood Glucose/analysis , Cholesterol/blood , Creatine Kinase/blood , DNA Damage , Female , Heart/drug effects , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Lymphocytes/drug effects , Mice , Spleen/drug effects , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL