Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837029

ABSTRACT

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Subject(s)
Agriculture , Boron , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Saudi Arabia , Water Pollutants, Chemical/analysis , Boron/analysis , Metals/analysis , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...