Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diseases ; 11(4)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38131990

ABSTRACT

Diabetes is a ubiquitous disease that causes several complications. It is associated with insulin resistance, which affects the metabolism of proteins, carbohydrates, and fats and triggers liver diseases such as fatty liver disease, steatohepatitis, fibrosis, and cirrhosis. Despite the effectiveness of Sitagliptin (ST) as an antidiabetic drug, its role in diabetes-induced liver injury is yet to be fully investigated. Therefore, this study aims to investigate the effect of ST on hepatic oxidative injury, inflammation, apoptosis, and the mTOR/NF-κB/NLRP3 signaling pathway in streptozotocin (STZ)-induced liver injury. Rats were allocated into four groups: two nondiabetic groups, control rats and ST rats (100 mg/kg), and two diabetic groups induced by STZ, and they received either normal saline or ST for 90 days. Diabetic rats showed significant hyperglycemia, hyperlipidemia, and elevation in liver enzymes. After STZ induction, the results revealed remarkable increases in hepatic oxidative stress, inflammation, and hepatocyte degeneration. In addition, STZ upregulated the immunoreactivity of NF-κB/p65, NLRP3, and mTOR but downregulated IKB-α in liver tissue. The use of ST mitigated metabolic and hepatic changes induced by STZ; it also reduced oxidative stress, inflammation, and hepatocyte degeneration. The normal expression of NF-κB/p65, NLRP3, mTOR, and IKB-α were restored with ST treatment. Based on that, our study revealed for the first time the hepatoprotective effect of ST that is mediated by controlling inflammation, oxidative stress, and mTOR/NF-κB/NLRP3 signaling.

2.
Toxics ; 11(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37755749

ABSTRACT

Autism spectrum disorder (ASD) is a complex developmental disorder in children that results in abnormal communicative and verbal behaviors. Exposure to heavy metals plays a significant role in the pathogenesis or progression of ASD. Mercury compounds pose significant risk for the development of ASD as children are more exposed to environmental toxicants. Increased concentration of mercury compounds has been detected in different body fluids/tissues in ASD children, which suggests an association between mercury exposure and ASD. Thioredoxin1 (Trx1) and thioredoxin reductase1 (TrxR1) redox system plays a crucial role in detoxification of oxidants generated in different immune cells. However, the effect of methylmercury and the Nrf2 activator sulforaphane on the Trx1/TrxR1 antioxidant system in neutrophils of ASD subjects has not been studied previously. Therefore, this study examined the effect of methylmercury on Trx1/TrxR1 expression, TrxR activity, nitrotyrosine, and ROS in neutrophils of ASD and TDC subjects. Our study shows that Trx1/TrxR1 protein expression is dysregulated in ASD subjects as compared to the TDC group. Further, methylmercury treatment significantly inhibits the activity of TrxR in both ASD and TDC groups. Inhibition of TrxR by mercury is associated with upregulation of the Trx1 protein in TDC neutrophils but not in ASD neutrophils. Furthermore, ASD neutrophils have exaggerated ROS production after exposure to methylmercury, which is much greater in magnitude than TDC neutrophils. Sulforaphane reversed methylmercury-induced effects on neutrophils through Nrf2-mediated induction of the Trx1/TrxR1 system. These observations suggest that exposure to the environmental toxicant methylmercury may elevate systemic oxidative inflammation due to a dysregulated Trx1/TrxR1 redox system in the neutrophils of ASD subjects, which may play a role in the progression of ASD.

3.
Int J Mol Sci ; 24(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175808

ABSTRACT

Sepsis affects millions of people worldwide and is associated with multiorgan dysfunction that is a major cause of increased morbidity and mortality. Sepsis is associated with several morbidities, such as lung, liver, and central nervous system (CNS) dysfunction. Sepsis-associated CNS dysfunction usually leads to several mental problems including depression. IL-17A is one of the crucial cytokines that is expressed and secreted by Th17 cells. Th17 cells are reported to be involved in the pathogenesis of depression and anxiety in humans and animals. One of the protein tyrosine kinases that plays a key role in controlling the development/differentiation of Th17 cells is ITK. However, the role of ITK in sepsis-associated neuroinflammation and depression-like symptoms in mice has not been investigated earlier. Therefore, this study investigated the efficacy of the ITK inhibitor, BMS 509744, in sepsis-linked neuroinflammation (ITK, IL-17A, NFkB, iNOS, MPO, lipid peroxides, IL-6, MCP-1, IL-17A) and a battery of depression-like behavioral tests, such as sucrose preference, tail suspension, and the marble burying test. Further, the effect of the ITK inhibitor on anti-inflammatory signaling (Foxp3, IL-10, Nrf2, HO-1, SOD-2) was assessed in the CNS. Our data show that sepsis causes increased ITK protein expression, IL-17A signaling, and neuroinflammatory mediators in the CNS that are associated with a depression-like state in mice. ITK inhibitor-treated mice with sepsis show attenuated IL-17A signaling, which is associated with the upregulation of IL-10/Nrf2 signaling and the amelioration of depression-like symptoms in mice. Our data show, for the first time, that the ITK inhibition strategy may counteract sepsis-mediated depression through a reduction in IL-17A signaling in the CNS.


Subject(s)
Interleukin-10 , Sepsis , Animals , Mice , Depression/drug therapy , Depression/etiology , Interleukin-17/metabolism , Neuroinflammatory Diseases , NF-E2-Related Factor 2 , Sepsis/complications
4.
Metabolites ; 13(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36984898

ABSTRACT

Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.

5.
Metabolites ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837907

ABSTRACT

Autism spectrum disorder (ASD) is a neuropsychiatric childhood disorder that affects social skill and language development, and is characterized by persistent stereotypic behaviors, restricted social interests, and impaired language/social skills. ASD subjects have dysregulated immune responses due to impairment in inflammatory and antioxidant signaling in immune cells, such as T cells. Thioredoxin reductase-1 (TrxR1) and thioredoxin-1 (Trx1) play a crucial role in the maintenance of redox equilibrium in several immune cells, including T cells. T-cell apoptosis plays a crucial role in the pathogenesis of several inflammatory diseases. However, it remains to be explored how the TrxR1/Trx1 redox couple affects T-cells apoptosis in ASD and typically developing control (TDC) groups. Therefore, this single-center cross-sectional study explored the expression/activity of TrxR1/Trx1, and Bcl2, 7-AAD/annexin V immunostaining in T cells of ASD (n = 25) and TDC (n = 22) groups. Further, effects of the LPS were determined on apoptosis in TDC and ASD T cells. Our data show that T cells have increased TrxR1 expression, while having decreased Trx1 expression in the ASD group. Further, TrxR enzymatic activity was also elevated in T cells of the ASD group. Furthermore, T cells of the ASD group had a decreased Bcl2 expression and an increased % of annexin V immunostaining. Treatment of T cells with LPS caused greater apoptosis in the ASD group than the TDC group, with same treatment. These data reveal that the redox couple TrxR1/Trx1 is dysregulated in T cells of ASD subjects, which is associated with decreased Bcl2 expression and increased apoptosis. This may lead to decreased survival of T cells in ASD subjects during chronic inflammation. Future studies should investigate environmental factors, such as gut dysbiosis and pollutants, that may cause abnormal immune responses in the T cells of ASD subjects due to chronic inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...